
Towards Automatic Program Partitioning

Sean Rul
Ghent University

Sint-Pietersnieuwstraat 41
B-9000 gent, Belgium
srul@elis.ugent.be

Hans Vandierendonck
Ghent University

Sint-Pietersnieuwstraat 41
B-9000 gent, Belgium

hvdieren@elis.ugent.be

Koen De Bosschere
Ghent University

Sint-Pietersnieuwstraat 41
B-9000 gent, Belgium

kdbosche@elis.ugent.be

ABSTRACT
There is a trend towards using accelerators to increase per-
formance and energy efficiency of general-purpose proces-
sors. Adoption of accelerators, however, depends on the
availability of tools to facilitate programming these devices.

In this paper, we present techniques for automatically par-
titioning programs for execution on accelerators. We call
the off-loaded code regions sub-algorithms, which are parts
of the program that are loosely connected to the remainder
of the program. We present three heuristics for automati-
cally identifying sub-algorithms based on control flow and
data flow properties.

Analysis of SPECint and MiBench benchmarks shows that
on average 12 sub-algorithms are identified (up to 54), cover-
ing the full execution time for 27 out of 30 benchmarks. We
show that these sub-algorithms are suitable for off-loading
them to accelerators by manually implementing sub-algorithms
for 2 SPECint benchmarks on the Cell processor.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.1.3 [Programming Techniques]: Con-
current Programming

General Terms
Design, Performance

Keywords
partitioning, sub-algorithms, accelerators, off-loading

1. INTRODUCTION
Currently, much focus is placed on accelerators as a use-

ful way to increase computational strength and efficiency
of existing processors. These accelerators can be integrated
on-die, as in STI’s Cell processor [20] and the POD accel-
erator [28], or they may be realized in accelerator boards

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’09, May 18–20, 2009, Ischia, Italy.
Copyright 2009 ACM 978-1-60558-413-3/09/05 ...$5.00.

as in GPUs [18], ClearSpeed’s CS301 [12] and Nallatech’s
Slipstream FPGA-based accelerator [4].

The problem with accelerators, however, is programming
them. Indeed, programmers must partition their programs
in a portion that is executed on the main processor and
a portion that is off-loaded to the accelerator. Accelerat-
ing applications on specialized cores requires several steps,
ranging from high-level program analysis up to low-level op-
timization specific to the accelerator core (Figure 1). The
amount of work to perform in each step depends strongly
on the accelerator’s architecture, the programming models
used and the strength of the compiler. For instance, most
accelerator architectures have private memories [12, 18, 20],
implying that the used data structures must be copied-in
or -out, or they must reside solely in the accelerator’s pri-
vate memory. The size of the task is also important, due
to communication delays and other task startup overheads.
Finally, accelerators are typically strong on data-parallel ap-
plications, so (i) the presence of data parallelism in the accel-
erator’s task is a plus and (ii) the code must be restructured
to exploit the data parallelism. This code migration path is
very time-consuming and error-prone [22], so tool support is
essential for making the use of accelerators widespread.

Some of the steps dealing with low-level representations
of the program have already been partially automated. E.g.
implementing the program partitioning can be as simple as
inserting pragmas in the CellSS [3] and Cellgen [19, 22] pro-
gramming models and compilers can aid in restructuring
code and data for execution on accelerators [6]. Identifying
a good program partitioning, however, requires extensive
program analysis, especially if control flow is complex and
if a large number of data structures or global variables is
used. For program partitioning, however, tool support ex-
ists at best for debugging particular partitionings [15] and
for timing validation [13]. The goal of this work is to facil-
itate the task of program partitioning, by suggesting good
partitionings to the programmer and by automatically iden-
tifying which data structures must be copied-in or -out, or
can remain local to the accelerator’s private memory.

The program partitioning problem is, in general, non-
trivial. Current successes reported for accelerator cores typ-
ically apply to applications with regular data flow and little
control flow, e.g. string matching on the Cell processor [27],
LDPC on a GPU [10] and multiple sequence alignment [26].
In these applications, program partitioning is fairly simple
and can be performed manually. It suffices to isolate the
most time-consuming loops in a program and to accelerate
these, as in the FLAT and CIGAR approaches [15, 25].

As accelerator cores become more prevalent in the future,
however, it will become essential to apply program parti-
tioning also to less regular applications, e.g. featuring many
function calls, complex control flow and less regular data
flow. For these applications, simple heuristics, such as iden-
tifying hot loops, are not sufficient at all, as control flow
may frequently enter and leave the hot loops. Approaches
based on min-cut network flow [8] are also not sufficient, as
they suffer from lack of scalability.

In this paper, we introduce a framework that enables
automatic identification of good program partitionings of
control-intensive applications. Hereto, we introduce the no-
tion of sub-algorithms, parts of the program that can easily
be separated from the rest of the program. The contribu-
tions of this paper are:

1. We present a theoretical framework to reason about
program partitioning for control-intensive applications
in Section 2. This theory builds on inter-procedural
control flow graphs and data flow graphs, as the pro-
gram partitioning must consider both control flow and
data flow to minimize communication.

2. We propose three heuristics to track data flow in Sec-
tion 2.2. First, the private use of data structures as
it makes communication of the private data structures
unnecessary. Second, we consider the amount and size
of data structures that are shared with code executing
on the main processor. Third, we consider the data
traffic to decide on suitable sub-algorithms.

3. Evaluation of the proposed heuristics (Section 3) shows
that on average up to 12 sub-algorithms suitable for
program partitioning are found in a mix of SPECint2000
and MiBench benchmarks. This shows that even small
benchmarks contain significant opportunities for pro-
gram acceleration. Furthermore, we apply the tech-
niques to partition the bzip2 and mcf benchmarks in
Section 4. Implementing a partitioning of them on the
Cell processor shows the validity of the approach.

Besides program partitioning, we see other potential ap-
plications of sub-algorithms in the areas of benchmarking
and program comprehension. These applications are moti-
vated in Section 5. In Section 6 the conclusions of this work
are summarized and potential extensions are discussed.

2. METHODOLOGY
The topic of this paper is to complete the work flow for

program partitioning (Figure 1) by automatically providing
potential program partitionings to the programmer. The ad-
ditional steps in the work flow required by our approach are
shown dashed in Figure 1. The first step is to construct a
program representation that describes the control flow, data
flow and data structures in the program. The details of this
representation are described below. The second step is to
analyze this representation and to suggest a number of possi-
ble program partitionings to the programmer, together with
instructions on how to implement them (i.e. the code regions
selected for execution on the accelerator and description of
the data structures used).

In this work, we use profiling to construct control flow
and data flow in the program. It is perfectly possible to
construct control flow and data flow representations using

static analysis. The trade-off between the two approaches is
well-understood. While static analysis is exact, it is also con-
servative, meaning that some non-existing dependencies are
listed in the program representation. Profile-based analysis,
on the other hand, shows the correct set of dependencies for
the profiled executions, but it may miss some dependencies
if the profiling input data sets are incorrectly chosen. Note
however that the choice between static analysis and profil-
ing is orthogonal to this work: the contribution of this work
is the way in which the program representation is analyzed
and remains the same whether dependencies are constructed
using static analysis or profiling.

2.1 Program Representation
In this section we introduce the necessary concepts on

how to represent the control and data flow of a program to
find sub-algorithms. These concepts are used throughout
the rest of the paper.

In a program we identify three types of code regions:
function bodies, loop bodies and general code fragments
(snippets). Code regions are strictly nested, i.e. every code
region is completely contained in a larger code region.

The code regions are strictly nested and are used as build-
ing blocks for our analysis to monitor the control and data
flow. Figure 2(a) shows the different code regions of a small
program1. The control flow between different code regions
is represented in a context sensitive call tree (Figure 2(b)).
Note that function Z occurs twice in the call tree because
both instantiations have a different code region as parent.

A call path is a sequence of edges from the call tree C
v1, v2, v3, . . . , vn−1, vn. This path is from node v1 to vn.

Since C is a tree, each path from the root to a leaf-node
is unique. Each node in the call tree is thus uniquely iden-
tified by its call path from the root. An example call tree
is represented in Figure 2(b). In general the root node of a
program is the main function.

A node w is called a descendant of a node v, if v is on
the call path from the root to w.

A subtree S(v) in the call tree C is the tree with as root
node v and all its descendants. We select sub-algorithms
from the subtrees based on their control and data flow char-
acteristics (discussed in Section 2.2). Since subtrees can be
nested we can find sub-algorithms in different granularities,
i.e. different amounts of code are executed per invocation
of the sub-algorithm. By selecting a sub-algorithm with a
different nesting level in the call tree, one can tune the size
of the sub-algorithm to memory latency and bandwidth and
to the communication delay characteristics of particular ac-
celerators. One of the contributions of this work is to limit
the search for the optimal sub-algorithm to a small number
of most interesting candidates. How interesting a subtree is
depends on its data dependence properties.

A code region m is data dependent on code region n if
it reads data produced by n. If its data is stored in data

structure ds, we write n
ds→ m.

In Figure 3(a) we repeat the example from the previous
section, but show besides the code regions also the data
structures and their size. The solid arrows still represent
the control flow, while the dotted arrows are the data de-
pendencies. An arrow from a code region to data structure

91The functions main, X, Y and Z can also contain snippets,
but these are omitted for clarity.

!"#$%&'

%"(&'
)*+,%'

-$"./,0+'

-$"+$*1'

$&2$&3&04*5"0'

-$"+$*1'

0/63,3'

)*,0'7-8'

3"#$%&'%"(&'

9*4*'/*6"#4'

7"2$"%&33"$'

3"#$%&'%"(&'

7
"
1
2
,/
&
$:
3;
'

<=&%#4*>/&:3;?'

@>A&%4'%"(&:3;'

<=&%#4*>/&:3;?'

@>A&%4'%"(&:3;'

<=&%#4*>/&:3;?'

@>A&%4'%"(&:3;'

9&>#++,0+'

*0('

"251,B*5"0'

-$"+$*1'2*$55"0,0+'

-$"+$*1'

2*$55"03'

Figure 1: Work flow for program acceleration

main

F

Function main(){

 ...

 F()

 ...

 Z()

 ...

}

Function F(){

 ...

 Begin Loop

 X()

 End Loop

 ...

}

Function X(){

 ...

 Y()

 ...

 Z()

 ...

}

S1

S2

L

X

main

F Z

LS1 S2

X

Y Z

Subtree

(a) Source code of example (b) Call tree of example

Figure 2: An example to illustrate the terminology

means that this code region is writing information in it. An
arrow from a data structure to a code region means that this
code region is reading from this data structure. We see that

X is data dependent on S1: S1
ds2→ X. Note that this graph

is related to the program dependence graph [9].

2.2 Program Partitioning
In this section we introduce three heuristics to find suit-

able partitions. In a first heuristic, we consider scenarios
where a sub-algorithm makes strong use of private data
structure, i.e. these data structures do not have to be copied
between the main processor’s memory and the accelerator
memory at all. Due to the way programs are often struc-
tured, this heuristic does not always detect enough sub-
algorithms. We present 2 more heuristics that use different
constraints and hence detect more sub-algorithms.

2.2.1 Heuristic A: Based on Private Data
A first way of finding sub-algorithms is finding subtrees

that have private data: data used only by the sub-algorithm,
i.e. internal or temporary state. The idea behind this heuris-
tic is that if a subtree has private data, it forms an indepen-
dent entity within the program, having its own data struc-
tures for its specific task.

Definition 2.1. A data structure ds is considered pri-

vate to a subtree S(v) iff

∃n, m ∈ S(v) : n
ds→ m

∀n ∈ S(v) : @m ∈ C(v) \ S(v) : (n
ds→ m) ∨ (m

ds→ n)

Note that when a data structure ds is private to a subtree
S(v) it can still be used by other code regions not part of
the subtree as long as there is no data dependency. So the
data structures can be reused (a name dependence).

Each function that has local variables fulfills the heuristic
of having private data, so each function is a sub-algorithm.
However, we consider this as a trivial case and we do not
call it a sub-algorithm. Also the main function is a special
case, since almost all program data is private at that level.
Moreover, we require that the subtree must have more pri-
vate data than its children. Otherwise all the ascendants of a
subtree with private data become defined as sub-algorithms.

Figure 3(b) marks the root of the detected sub-algorithms
using this first heuristic in the graph with a grey background.
By using this heuristic we detect that the subtree with root
X has its own private data and as a result is a sub-algorithm.
Figure 3(a) shows that subtree S(X) is the only one using
data structure ds3. The subtree of X also has shared data
structures, namely ds2 and ds4. The subtree S(L) has no
new private data, so it is not a sub-algorithm. However,
subtree S(F) has new private data besides ds3 that was
already private in subtree S(X), namely ds2 and ds4. Note
that ds4 is also used outside the subtree, but this a name
dependence (caused by a reuse of this data structure) which
can be avoided by duplicating this data structure.

2.2.2 Heuristic B: Based on Shared Data
Depending on the programming style some programs make

only little use of private data structures. Hence, the sec-
ond heuristic for finding a sub-algorithm is comparing the
amount of shared data of a subtree, with the amount of
shared data structures of its parent subtree. If it has less
shared data than its parent, it is a sub-algorithm.

Definition 2.2. A data structure ds is shared by a sub-
tree S(v) and the remainder of the program iff

∃n ∈ S(v) : ∃m ∈ C(v) \ S(v) : (n
ds→ m) ∨ (m

ds→ n)

This is notated as shared(ds, S(v)). The set of shared data
structures of a subtree S(V) is defined by

shared(S(v)) = {ds : shared(ds, S(v))}

Definition 2.3. The amount of shared data of subtree

main

F Z

LS1 S2

X

Y Z

main

F Z

LS1 S2

X

Y Z

ds3

256

(4, 4)

(8, 8)

(1004,1004)

(1004, 8)

(1004, 10)

(1004, 10.04)

(256, 256) (1000, 10)

ds4

1k

ds1

4

ds2

4

ds5

4

(a) Data usage of example (b) Call tree of example with annotaded edges

Figure 3: The root of each sub-algorithm has a grey
background. The two weights on the edges in the
figure on the right indicate the amount of shared
data and the traffic for the underlying subtree

S(v) is defined byX
i

sizeof(dsi) with dsi ∈ shared(S(v))

The idea is similar to the first heuristic, but instead of
finding subtrees that have more private data, we look for
subtrees that have less shared data with the nodes outside
the subtree. Normally the closer one gets to the root of the
call tree (the main function), the less shared data one has,
since in the root node the amount of shared data is zero.
However, if we find a local minimum on the call path, this
indicates an interesting subtree to cut off. A benefit of this
heuristic is that we put no requirements on the existence
of private data. In the evaluation (Section 3) this turns
out to make a big difference in the number of detected sub-
algorithms. Again we ignore the case of a single function
(leaf nodes in the call tree) for our evaluation.

In Figure 3(b) the total amount of shared data for each
subtree is indicated as the first number on the edges. One
can make a difference between the amount of shared data
that is read, written and the total amount. If the total
amount is equal to the sum of the read and written shared
data, it means the subtree has a separate read and write
set. In order not to overload the figure we leave out the
amount of read and written shared data and just show the
total amount of shared data. In this simple example we find
no subtree that meets our requirements. The reason is that
we have a large data structure ds4 that is shared by different
nodes, giving a large value for the amount of shared data.

2.2.3 Heuristic C: Based on Data Traffic
The last heuristic for detecting sub-algorithms is by look-

ing at data traffic of a subtree with the rest of the pro-
gram. The data traffic of a subtree is based on the average
amount of data that is read and written from shared data.
If the traffic of a subtree is less than its parent, it is a sub-
algorithm. The motivation for this heuristic is that it can
find sub-algorithms that share large data structures with
the outside world, but that only have few dependencies. In
other words communication overhead is low, something that
is disregarded by the second heuristic.

Definition 2.4. Data traffic for a subtree is defined by

amount of read and written shared data of S(v)

execution count of v

In Figure 3(b) the data traffic is indicated by the second
number on the edges. In this case we find that the sub-
tree S(X) is a sub-algorithm since its traffic is smaller than
to that of its parent L. So where the second heuristic did
not classify this subtree as a sub-algorithm because of the
large amount of shared data, this heuristic shows that on
the communication overhead is limited.

3. EVALUATION OF THE HEURISTICS

3.1 Experimental Setup
To evaluate our sub-algorithms, we consider 30 bench-

marks that are a mixture of integer benchmarks from SPEC
2000 and the embedded MiBench suite [11]. Table 1 pro-
vides an overview of the benchmarks. We use a profiling
tool [21] to obtain the dependence information of the pro-
grams needed to detect the sub-algorithms. All benchmarks
are compiled with gcc 4.1.0 for a powerPC 750 on linux.

3.2 The Number of Detected Sub-Algorithms
Figure 4 shows for each benchmark the number of sub-

algorithms detected by the 3 heuristics and the total number
of unique sub-algorithms. If identical subtrees are detected
(they have the same code regions) they are only counted as
one sub-algorithm. The main function, which represents the
complete program, is not counted as a sub-algorithm. Also
leaf nodes and subtrees with a library function as root are
not taken into account. Moreover, the execution time of a
subtree needs to be at least 1% of the total execution time.

The number of total detected sub-algorithms varies widely.
For eight benchmarks only one or two sub-algorithms are
detected. Nine benchmarks have at least 15 sub-algorithms.
The limited number of sub-algorithms is typical for small
embedded benchmarks in the MiBench suite. Spec CINT
2000 applications are much bigger and have a larger number
of sub-algorithms.

For heuristic A, based on private data, we get the small-
est number of sub-algorithms and in 11 cases we are not
able to detect any sub-algorithm using this heuristic. This
is caused by the fact that none of the subtrees have pri-
vate data structures. So if the inner workings of a program
are mostly based on shared data, this heuristic is unable to
find sub-algorithms. When using the amount of shared data
(heuristic B) or the data traffic (heuristic C), we get a higher
number of sub-algorithms than heuristic A. Both heuristics
also detect more sub-algorithms with a loop at the root of
the subtree.

3.3 The Coverage of Detected Sub-Algorithms
Not only the number of sub-algorithms is important, also

their coverage needs to be high for several of the poten-
tial applications of sub-algorithms. If the maximum cover-
age of the detected sub-algorithms only comprises a small
fraction of the total execution time, they are not suitable
for off-loading or representative for performance evaluation.
However, Figure 5 shows that in most cases the combined
heuristics for detecting sub-algorithms have a coverage of
more than 99%. The coverage is less than 50% for qsort,
lame and gsm.

Table 1: Benchmarks used in this study along with their inputs and dynamic instruction counts (in millions)

Benchmark Input Cnt(M) Benchmark Input Cnt(M)

SPEC CPU2000 MiBench

C
IN

T bzip2 train 62547

o
ffi

ce

ispell small 9
gzip train 43141 sphinx small 2062
mcf train 7658 stringsearch small 0.2

MiBench

se
cu

ri
ty

blowfish.dec small 81

a
u
to

m
o
ti
v
e basicmath small 64 blowfish.enc small 81

bitcount small 34 pgp.sign small 26
qsort small 43 rijndael.dec small 29
susan.corners small 1 rijndael.enc small 30
susan.edges small 2 sha small 12
susan.smoothing small 35

te
le

co
m

m

adpcm.dec small 25

co
n
s jpeg.dec small 5 adpcm.enc small 30

jpeg.enc small 23 crc32 small 112
lame small 118 fft.inv small 41

n
et

w dijkstra small 55 fft small 37
patricia small 87 gsm.dec small 22

gsm.enc small 53

The maximum coverage of sub-algorithms detected by
heuristic A (if any) is comparable to the coverage of heuristic
B & C. In some benchmarks (e.g. blowfish and fft) the best
coverage is achieved by the heuristic of data traffic (heuristic
C).

3.4 Comparison of the Heuristics
From the previous evaluation we know that the three

heuristics have a high coverage. Another important aspect
is the overlap of the detected sub-algorithms between the
different heuristics. This is shown in Figure 6. Each letter
represents the corresponding heuristic that detects a spe-
cific sub-algorithm. So AB means the a sub-algorithm is
detected by both heuristic A and B, while ABC means that
the three heuristics find this sub-algorithm.

Both A, B and C have fractions in the graph, meaning
that each heuristic finds unique sub-algorithms not detected
by the other two heuristics. However, only heuristic C has
a reasonable amount of unique sub-algorithms compared to
the other two heuristics. The largest fraction in the graph is
BC. So the results from shared data (heuristic B) and data
traffic (heuristic C) are most closely related to each other.

4. PROOF OF CONCEPT
In Section 4.1 we give an in-depth analysis of the detected

sub-algorithms in bzip2 and in Section 4.2 for mcf. In Sec-
tion 4.3 we evaluate the performance of a sub-algorithm run
on the SPEs of a Cell processor.

4.1 Case Study of Bzip2
Figure 7 shows the call tree of the major code regions of

the compression part of bzip2. Basically the program has a
compression (spec compress) and a decompression (spec un-
compress) routine which both consists of a loop that per-
forms the necessary encoding or decoding steps. We will
mainly focus on the compression part, since this is the more
time-consuming part of the program.

Sub-algorithms based on private data.
Each of the code regions, except for the three nodes with

!"#$%&''()%&*#+

,""$+-+

."*/01/2,3("4%!&+
/"2&5&%'67.&+

8%*1'9"%#*:"1+

;&1&%*)&+

<8=>*.4&'+

'&1/+

<8=>*.4&'+

?7<*@&+

A"/&,&1;)?+
'"%)B)+;&)2,3$*6%+

'6#$.&("%)+,""$C+

D("%)E+ 94..F)G+

,&;&1/+

(47H*.;"%6)?#+

I)?&%+1"/&'+

Figure 7: High-level overview the most important
call paths within the compression part of bzip2

a dotted border (loadAndRLEsource, getRLEpair and full-
GtU) in Figure 7 are sub-algorithms. In Table 2 we sum-
marized the number of private and shared data structures
for each subtree2. This explains immediately why loadAn-
dRLEsource and getRLEpair are not detected as a sub-
algorithm: they do not have any private data structures.

Table 2 also shows the coverage of execution time for each
subtree compared to the total execution time. We see that
the compression part of bzip2 is responsible for about 86.6%,
while the decompression for 13.4%. Also note that the ma-
jority of the execution time of doReversibleTransformation
is spent in the sub-algorithm sortIt.

Sub-algorithms based on shared data.
In Figure 8 we show for different call paths the amount

of shared data. Each line in the graph represents a different
call path of the call tree in Figure 7 for the compression

92Note that in practice our tool gives the name of the involved
data structures, however, due to space restrictions we just show the
number of data structures.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)
*+
,
$
"

-
*+
,
"

.
/0
"

)
1
2+
/.

1
34
"

)
+3
/5
6
7
3"

8
25
93
"

26
21
7
:/
"

26
21
7
:;
"

26
21
7
:2
"

<,
;
-
:=
"

<,
;
-
:;
"

>1
.
;
"

=
+<
?
23
91
"

,
1
39
+/
+1
"

+2
,
;
>>
"

2,
4
+7
@
"

23
92
;
1
9/
4
"

)
>5
A
B
24
:=
"

)
>5
A
B
24
:;
"

,
-
,
:2
+-
7
"

9+
<7
=
1
;
>:
=
"

9+
<7
=
1
;
>:
;
"

24
1
"

1
=
,
/.

:=
"

1
=
,
/.

:;
"

/9
/%
$
"

C
3:
+7
D
"

C
3"

-
2.

:=
"

-
2.

:;
"

E
6
.
)
;
9"
5
0"
26
)
F1
>-
5
9+
34
.
2"

G;69+2H/"I" G;69+2H/"J" G;69+2H/"K" L531>"

Figure 4: Number of detected sub-algorithms for each heuristic

Table 2: Information on number of private and
shared data structures and coverage for different
subtrees of bzip2

Root of subtree Cov (%) Prv DS Shr DS

spec compress 86.59 32 15
compressStream 86.59 31 16
Loop1 86.59 23 22
loadAndRLEsource 5.32 0 11
getRLEpair 4.60 0 6
doReversibleTf 59.24 6 15
sortIt 58.91 2 13
generateMTFValues 16.39 1 10
sendMTFValues 5.64 5 15
hbMakeCodeLenghts 3.80 1 6
spec uncompress 13.40 28 21
uncompressStream 13.40 27 22
Loop2 13.40 20 15
getAndMoveToFrontDec 11.40 10 15
undoReversibleTf 2.00 2 15

part. Reading the X-axis from left to right is equivalent to
traversing the call tree from a leaf node up to the main node
of the program. The amount of shared data in main is of
course zero, since this is the root node of the call tree.

As opposed to the first heuristic, the second heuristic
does not identify the subtrees higher in the call tree (Loop1,
compressStream and spec compress) as sub-algorithms since
they have no smaller amount of shared data compared to
their parent. The subtrees beneath Loop1, however, are
identified as sub-algorithms. Now even loadAndRLEsource
and getRLEpair are marked as such, as the second heuristic
poses no requirements on the existence of private data. The
analysis also detected other sub-algorithms that are incor-
porated in the subtrees shown here. However, since their
coverage is much smaller they are not shown.

!"#$!!%

&"#$!'%

("#$!'%

)"#$!*%

+"#$!*%

+"#$!*%

,-./%0% 123/,4%0% 5--1%)% 6-713/88943/27% 81/6:6-713/88% 72;,%

0%<%8-34=4% 0%<%>/4?5#12;3% 0%<%>/,/324/@ABC2DE/8% 0%<%FG@2H/I-./5/,>F48%

Figure 8: Shared data for different call paths of
bzip2

!"##$%!&'

!"##$%!('

!"##$%!)'

!"##$%!*'

+,-.'/' 012.+3'/' 4,,0'!' 5,602.77832.16'70.595,602.77' 61:+'

/';'7,23<3' /';'=.3>4$01:2' /';'=.+.213.?@AB1CD.7' /';'EF?1G.H,-.4.+=E37'

Figure 9: Data traffic for different call paths of bzip2

Sub-algorithms based on data traffic.
The results for the third heuristic, based on data traffic,

are shown in Figure 9. While this graph shows a lot of sim-
ilarities with Figure 8 from the second heuristic, there are
some important but subtle distinctions. The subtree of hb-
MakeCodeLengths is identified as a sub-algorithm based on
the amount of shared data . However, based on the data
traffic, we see this is no longer the case. The data traffic of
its parent subtree, sendMTFValues, is actually smaller. So
communication-wise, hbMakeCodeLengths is no longer an in-
teresting sub-algorithm. The identification of getRLEpair as
a sub-algorithm by the second heuristic, however, is empha-

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

,
-.
/
$
"

0
-.
/
"

1
23
"

,
4
5.
21

4
67
"

,
.6
28
9
:
6"

;
58
<6
"

59
54
:
=2
"

59
54
:
=>
"

59
54
:
=5
"

?/
>
0
=@
"

?/
>
0
=>
"

A4
1
>
"

@
.?
B
56
<4
"

/
4
6<
.2
.4
"

.5
/
>
AA
"

5/
7
.:
C"

56
<5
>
4
<2
7
"

,
A8
D
E
57
=@
"

,
A8
D
E
57
=>
"

/
0
/
=5
.0
:
"

<.
?:
@
4
>
A=
@
"

<.
?:
@
4
>
A=
>
"

57
4
"

4
@
/
21

=@
"

4
@
/
21

=>
"

2<
2%
$
"

F
6=
.:
G
"

F
6"

0
51

=@
"

0
51

=>
"

H
4
C.
1
9
1
"I
8
G
>
<4
0
>
"J
K
L"

I8G><40>"M" I8G><40>"N" I8G><40>"I" O864A"I8G><40>"

Figure 5: Coverage of detected sub-algorithms for each heuristic in percentage of total execution time

!"#$%&'()*'+#$!&),-

.//!-0-

")1")+2'-

!/*)(3%&-

!"#$%&'-

4)%'$!!-

.//!-5-

!"#$%&'-

#$#(6+-

+/"*'4%+7)*-.//!-8-

.//!-9-

.):)(;-

<64=%&:/"#*2$-

>*2)"-(/;)+-

?6%&'1)%+#4&)-

6!;%*)'*"))-

.//!-@-

.//!-A-

B"#$%&'1)%+#4&)-

.//!-C-

.//!-D-

Figure 10: High-level overview the most important
call paths within the primal net simplex of mcf

sized by the third heuristic. Based on the amount of shared
data it already showed a small benefit, but if we look at the
data traffic we find a huge advantage (note that the point
lies beneath the scale we used).

4.2 Case Study of Mcf
The mcf benchmark does some vehicle scheduling which

is formulated as a large-scale minimum-cost flow problem.
This is solved by using a network simplex algorithm. Hence
three quarters of the time is spend in primal net simplex. In
Figure 10 we show an overview of the call paths of this part.

Sub-algorithms based on private data.
In Table 3 we see that most subtrees have no private data

structures. As a result only read min (used for reading the
input) and primal bea mpp are identified as sub-algorithms
with our heuristic based on private data. The parents of pri-
mal bea mpp (Loop1 and primal net simplex) have no extra
private data compared to their child, so they are not classi-

fied as sub-algorithms by the first heuristic. It is clear that
since the algorithm in mcf is based on a few data structures
that are shared throughout the entire program that the first
heuristic cannot find many sub-algorithms.

Sub-algorithms based on shared data.
The second heuristic compares the amount of shared data

of a subtree to the amount of shared data of its parent. This
information is shown in the column Shared ratio of Table 3:
if the ratio is > 1 it means that the parent has the same or
more shared data (good), if it is ≤ 1 the subtree has more
shared data than its parent (bad). Although we find more
sub-algorithms using this heuristic, we see that in most cases
that ratio is close to one (1+ε). The reason for the marginal
improvement in amount of shared data is the fact that the
largest shared data structures are used everywhere. Only
for sort basket there is a real improvement, because it does
not use the larger shared data structures.

Sub-algorithms based on data traffic.
For the third heuristic we can use the last column (Comm

ratio in Table 3. Again a ratio bigger than one means the
subtree has on average less traffic compared to the commu-
nication of its parent. This time we see a much better result.
Most of the detected sub-algorithms even have a significant
reduction in data traffic. This indicates that while the data
flow in mcf is mainly comprised by a few large shared data
structures, on average only a small amount of that data is
used for each invocation.

4.3 Acceleration on the Cell BE
The evaluation of the acceleration is done on a PlayStation

3 running Linux kernel 2.6.23 and is compiled with gcc.4.1.2.
The most important characteristics of this processor are pro-
vided in Table 4. We only made an implementation for two
benchmarks because getting a lot of performance out of the
SPEs on a Cell BE is a very time consuming process that
requires a lot of hand-tuning.

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-
./
0
%
#

1
./
0
#

2
34
#

-
5
6/
32

5
78
#

-
/7
39
:
;
7#

<
69
=7
#

6:
65
;
>3
#

6:
65
;
>?
#

6:
65
;
>6
#

@0
?
1
>A
#

@0
?
1
>?
#

B5
2
?
#

A
/@
C
67
=5
#

0
5
7=
/3
/5
#

/6
0
?
BB
#

60
8
/;
D
#

67
=6
?
5
=3
8
#

-
B9
E
F
68
>A
#

-
B9
E
F
68
>?
#

0
1
0
>6
/1
;
#

=/
@;
A
5
?
B>
A
#

=/
@;
A
5
?
B>
?
#

68
5
#

5
A
0
32

>A
#

5
A
0
32

>?
#

3=
3&
%
#

G
7>
/;
H
#

G
7#

1
62

>A
#

1
62

>?
#

I
?
B5
J
H
?
#4
=5
3J
9
;
#

K# L# M# KL# KM# LM# KLM#

Figure 6: Breakdown of different sub-algorithm detection mechanisms

Table 3: Information on coverage, number of private and shared data structures, amount of shared data and
communication compared to their parent for different sub-algorithms of mcf

Root of subtree Crit Coverage (%) Private DS Shared DS Shared ratio Comm ratio

read min ABC 3.63 2 40 1 + ε 219.0
price out impl BC 27.69 0 3 1.004 78611.1
primal net simplex BC 67.57 5 5 1 + ε 8297.2
Loop1 C 66.30 5 5 1 1.2
primal bea mpp ABC 41.34 5 3 1.004 90.4
Loop3 C 1.41 0 2 1 11.4
Loop4 C 23.23 0 7 0.99 1.1
Loop5 BC 22.03 0 4 1 + ε 7.7
sort basket BC 13.87 0 2 15147 8.1
Loop6 C 10.26 0 2 1 1.5
Loop7 C 1.72 0 2 1 9.3
dual feasible BC 1.22 0 3 1.004 791.2
Loop8 C 1.16 0 3 1 1 + ε

4.3.1 Running Bzip2 on the Cell BE
The part that is accelerated on the SPEs is the sub-algo-

rithm simpleSort that performs a shell’s sort. This part
takes about 20% of the execution time and calls upon a
variable-length-compare (fullGtU). The sub-algorithm sim-
pleSort is called by a quickSort algorithm (qSort3) and the
main sorting routine sortIt. Both simpleSort and fullGtU
are run on the SPEs. Moreover, there is parallelism be-
tween the calls from qSort3 to simpleSort, allowing to use
several SPEs. The reason for choosing simpleSort as the
sub-algorithm to accelerate is that it takes most of the exe-
cution time of the compression part. In Figure 7 we see that
its parents are also defined as sub-algorithms. However, try-
ing to accelerate them on the Cell BE will be problematic
due to limited size of the local store of an SPE. As explained
before, one has to pick the proper granularity for the desired
accelerator. In this case the optimum point is in simpleSort.
Its parent sortIt has a very control intensive part and should
be left on the PPE side.

If we use hot code analysis, we will find that fullGtU is

the hottest region in this part of the program. However,
it is completely data dependent on information provided
by qSort3 and simpleSort. Hence, off-loading only fullGtU
solely based on its hotness would result in a large communi-
cation overhead. Our heuristics, however, clearly show that
fullGtU has no private data structures (heuristic A), too
much shared data (heuristic B) and also has an unfavorable
amount of communication (heuristic C).

The speedup results are shown in Figure 11(a). The qSort3
runs 56% faster allowing the compression part to finish 14%
times faster. This results in a total speedup of 9%.

4.3.2 Running Mcf on the Cell BE
For accelerating mcf we move the entire primal bea mpp

sub-algorithm to the SPUs. This sub-algorithm takes 41.3%
of the execution time and consists of several nested loops
and sort basket. The main loop of primal bea mpp is Loop4
and can be parallelized speculatively across several SPUs.

Looking at the hottest loops in primal net simplex brings
up refresh potential (Figure 10) that is responsible for about

Table 4: Cell specifications for PlayStation 3

1 PowerPC Processor Element (PPE) 6 Synergistic Processor Elements (SPEs)

Type of processor 64-bit in-order RISC @ 3.2 GHz 128 bit in-order vector processor
Memory hierarchy 32 KB L1 data and instruction cache and

unified 512 KB L2 cache
256 KB local storage

Properties two-way simultaneous multithreading no hardware branch prediction,
two-way superscalar explicit memory management

(b) mcf(a) bzip2

!"#$%

!"!&%

!"'(%

!%

!"!%

!")%

!"*%

!"&%

!"#%

!"$%

+,-./*% 0-12.344% /-/56%

.37%892:/% !"#!$

%"&&$

%$

%"#$

&$

&"#$

!$

!"#$

'$

()*+,-./0,.+(($ 121,-$

1),*3$*3(41$

Figure 11: Speedup results using 6 SPEs as acceler-
ators compared to single PPE execution

20% of the execution time. However, its data communica-
tion characteristics are very unfavorable, making this a bad
choice for off-loading to an accelerator.

The speedup results of primal bea mpp are shown in Fig-
ure 11(b). The sub-algorithm runs 3.53 times faster than
the original version on the PPE. In total mcf runs 22% times
faster thanks to the accelerators.

5. RELATED APPLICATION FIELDS FOR
SUB-ALGORITHMS

Based on our evaluation sub-algorithms appear to be well-
suited entities for off-loading functionality on acceleration
cores, e.g. off-loading to the SPUs in the Cell BE proces-
sor [20] or to a GPU. In general, function off-loading can
be considered a special case of program partitioning, which
is typically formulated as a min-cut flow problem [8]. A re-
lated problem was considered for Multiscalar processors [24],
where tasks are identified with minimum communication
cost. The size of these tasks is, however, limited. Sub-
algorithms on the other hand are found in different granu-
larities, but in most cases they will be too big to be suitable
for the Multiscalar.

Performance evaluation is another area where sub-algo-
rithms can contribute. Analyzing and simulating large pro-
grams is a time consuming job for computer architects. Fur-
thermore, it is important that analysis and simulation are
reproducible. Hence, performance evaluation is typically
performed using small and manageable benchmarks. The
construction of such benchmarks is not algorithmically de-
scribed in the literature but it is a rather ad hoc proce-
dure [14, 17]. We believe that sub-algorithms are a viable
first step towards the automatic identification of pieces of
programs that are usable as stand-alone benchmarks by ex-
tracting sub-algorithms from real-life programs. An alter-
native approach discussed in the literature is to reduce large
applications to synthetic benchmarks that exhibit the same
architectural behavior, but do not have any real functional-
ity [2]. Such heuristics, however, are restricted to computer

architecture evaluation. They cannot be used, e.g., to eval-
uate compiler technology.

The relative cost for maintaining software and managing
its evolution now represents more than 90% of its total cost.
This is referred to as the legacy crisis by Seacord et al. [23].
Hence, program understanding becomes an important field
in software development. It is the software engineering disci-
pline concerned with understanding existing programs with
the goal of facilitating code maintenance. Hereto, one tries
to find a mapping between features of programs (which can
be the functionality, requirements or other concerns of the
program) to the actual source code. Many of these heuris-
tics rely, amongst others, on execution-driven analysis in
order to identify the code regions that are executed when
a particular concern is exercised [5, 7]. Also, techniques
have been developed to visualize run-time dependencies be-
tween features [16]. These elements are also present in our
analysis, i.e. in the profiling information and in the graph
representation of programs. Furthermore, we believe that
the sub-algorithms may provide additional benefits in de-
scribing the structure of a program in relation to the usage
of data structures, which may give programmers additional
insight before delving into the source code.

For certain input parameters a function can be further
optimized, a technique known as code specialization. Pre-
vious research [1] studied different techniques to specialize
a C-program using both analysis of control and data flow.
Instead of using functions for specialization one can also
consider using sub-algorithms. By using value profiling it
is possible to find common cases of sub-algorithm that is
suitable for optimization.

6. CONCLUSION AND FUTURE WORK
We have presented a technique to extract functionality

from a program, so called sub-algorithms, that forms an iso-
lated entity within the program and that is independent of
the instruction set. We introduced three heuristics to de-
tect such sub-algorithms, all of them focused on data usage.
The first heuristic searches for an increase in private data,
the second for a decrease in the amount of shared data and
the third in a decrease of the data traffic.

Our experimental evaluation shows for thirty benchmarks
that we are able to detect tens of these sub-algorithms even
in small programs. In most cases several sub-algorithms in
a program are nested. This allows one to chose the suit-
able granularity for the desired architecture. We used sub-
algorithms as accelerator on the Cell BE, resulting in good
speedups even for programs with complex control flow.

In this work we mainly focussed on detecting sub-algo-
rithms for acceleration. A next step would be to provide
this information to a compiler in order to further automate
the process of program partitioning.

Acknowledgments
Sean Rul is supported by a grant from the Institute for the
Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen). Hans Vandierendonck is a
post-doctoral research fellow with the Fund for Scientific
Research-Flanders (FWO). This research is also funded by
Ghent University and HiPEAC.

7. REFERENCES
[1] L. O. Andersen. Program Analysis and Specialization

for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994.

[2] R. H. Bell. Automatic workload synthesis for early
design studies and performance model validation.
lib.utexas.edu, page 169, 2005.

[3] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta.
CellSS: a programming model for the Cell BE
architecture. In SC ’06, page 86, 2006.

[4] A. Cantle and R. Bruce. An Introduction to the
Nallatech Slipstream FSB-FPGA Accelerator Module
for Intel Platforms. White paper,
http://www.nallatech.com, Sept. 2007.

[5] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G.
Guéhéneuc. Cerberus: Tracing requirements to source
code using information retrieval, dynamic analysis,
and program analysis. In ICPC 2008: The 16th IEEE
International Conference on Program Comprehension,
pages 53–62, June 2008.

[6] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu,
T. Chen, P. H. Oden, D. A. Prener, J. C. Shepherd,
B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, and
M. Gschwind. Optimizing compiler for the Cell
processor. In PACT ’05, pages 161–172, 2005.

[7] A. Eisenberg and K. De Volder. Dynamic feature
traces: finding features in unfamiliar code. In
ICSM’05, pages 337–346, Sept. 2005.

[8] P. Elias, A. Feinstein, and C. Shannon. A note on the
maximum flow through a network. Information
Theory, IEEE Transactions on, 2(4):117–119, 1956.

[9] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in
optimization. ACM Transactions on Programming
Languages and Systems, 9:319–349, 1987.

[10] a. Gabriel Falc L. Sousa, and V. Silva. Massive
parallel LDPC decoding on GPU. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming,
pages 83–90, 2008.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. In Intl. Workshop on Workload
Characterization, 2001.

[12] T. R. Halfhill. Floating point buoys ClearSpeed.
Microprocessor Report, page 7, Nov. 2003.

[13] IBM. Performance Analysis with the IBM Full-System
Simulator. Documentation,
http://www.ibm.com/developerworks/power/cell/,
Sept. 2007.

[14] R. Jain. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, 1991.

[15] J. H. Kelm, I. Gelado, M. J. Murphy, N. Navarro,
S. Lumetta, and W. mei Hwu. CIGAR: Application
partitioning for a CPU/coprocessor architecture. In
PACT ’07: Proceedings of the 16th International
Conference on Parallel Architecture and Compilation
Techniques, pages 317–326, 2007.

[16] A. Lienhard, O. Greevy, and O. Nierstrasz. Tracking
objects to detect feature dependencies. In ICPC ’07:
Proceedings of the 15th IEEE International Conference
on Program Comprehension, pages 59–68, 2007.

[17] D. J. Lilja. Measuring Computer Performance.
Cambridge University Press, 2000.

[18] E. Lindholm, J. Nickolls, S. Oberman, and
J. Montrym. NVIDIA Tesla: A Unified Graphics and
Computing Architecture. IEEE Micro, 28(2):39–55,
2008.

[19] T. Mattson. Introduction to openmp. In SC ’06:
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 209, 2006.

[20] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P.
Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty,
Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,
M. Suzuoki, M. Wang, J. Warnock, S. Weitzel,
D. Wendel, T. Yamazaki, and K. Yazawa. The design
and implementation of a first-generation Cell
processor. In ISSCC 2005, IEEE International
Solid-State Circuits Conference, pages 184–592, 2005.

[21] S. Rul, H. Vandierendonck, and K. De Bosschere.
Detecting the existence of coarse-grain parallelism in
general-purpose programs. In Proceedings of the First
Workshop on Programmability Issues for Multi-Core
Computers, MULTIPROG-1, page 12, 1 2008.

[22] S. Schneider, J.-S. Yeom, B. Rose, J. C. Linford,
A. Sandu, and D. S. Nikolopoulos. A comparison of
programming models for multiprocessors with
explicitly managed memory hierarchies. In PPoPP
’09, pages 131–140, 2009.

[23] R. C. Seacord, D. Plakosh, and G. A. Lewis.
Modernizing Legacy Systems: Software Technologies,
Engineering Process and Business Practices.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[24] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar.
Multiscalar processors. In ISCA ’95: Proceedings of
the 22nd annual international symposium on
Computer architecture, pages 414–425, 1995.

[25] D. C. Suresh, W. A. Najjar, F. Vahid, J. R. Villarreal,
and G. Stitt. Profiling tools for hardware/software
partitioning of embedded applications. In LCTES ’03:
Proceedings of the 2003 ACM SIGPLAN conference
on Language, compiler, and tool for embedded systems,
pages 189–198, 2003.

[26] H. Vandierendonck, S. Rul, M. Questier, and
K. De Bosschere. Experiences with parallelizing a
bio-informatics program on the Cell BE. In HiPEAC
2008, volume 4917, pages 161–175. Springer, 1 2008.

[27] O. Villa, D. P. Scarpazza, and F. Petrini. Accelerating
real-time string searching with multicore processors.
Computer, 41(4):42–50, 2008.

[28] D. H. Woo, H.-H. S. Lee, J. B. Fryman, A. D. Knies,
and M. Eng. Pod: A 3D-integrated broad-purpose
acceleration layer. IEEE Micro, 28(4):28–40, 2008.

