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Abstract. The problem of defending software against tampering by a
malicious host is not expected to be solved soon. Rather than trying
to defend against the first attack, randomization tries to minimize the
impact of a successful attack. Unfortunately, widespread adoption of this
technique is hampered by its incompatibility with the current software
distribution model, which requires identical physical copies. The ideas
presented in this paper are a compromise between distributing identical
copies and unique executions by diversifying at run time, based upon
additional chaff input and variable program state. This makes it harder
to zoom in on a point of interest and may fool an attacker into believing
that he has succeeded, while the attack will work only for a short period
of time, a small number of computers, or a subset of the input space.

1 Introduction

Protecting software against attacks from the outside is a problem that has been
largely solved in theory. In practice, however, vulnerabilities continue to be dis-
covered at an astonishing rate. Buffer overflows, for example, were a solved prob-
lem as early as the 1960s, yet continue to be the most common type of security
issue [19].

Due to the complexity of modern software and the increasing body of legacy
code, this and other types of vulnerabilities continue to exist. Run-time random-
ization acknowledges this and tries to mitigate attacks at a different level: by
removing predictability and consistency between different executions. Address
space layout randomization (ASLR), for example, is an acknowledgment that
buffer overflows and related types of attack will continue to emerge. ASLR is
available for mainstream operating systems such as Linux (PaX) and Windows
Vista.
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Protecting software against a malicious host is sometimes a theoretically un-
solvable problem [3]. Intuitively, any protection scheme other than a physical
one depends on the operation of a finite-state machine. Ultimately, given physi-
cal access, any finite-state machine can be examined and modified at will, given
enough time and effort [8]. This intuition is confirmed by many examples: Users
cheat in games, DRM systems are compromised, software is installed and used
without the proper license, pay-TV suffers from piracy, etc.

Most defenses against malicious hosts are about delaying the first attack. The
success of these techniques varies in terms of the additional time and effort re-
quired by a tamperer. However, no actively attacked protection has remained
unbroken for an extended period of time. Randomization is a promising addi-
tional layer of defense: Rather than trying to postpone the first attack, it is about
limiting the impact of a successful attack in space and time. However, surpris-
ingly little research is publicly available on randomization against malicious-host
attacks.

Existing proposals for randomization against malicious hosts randomize the
program before distribution. Unfortunately, diverse copies are in conflict with
the current software-distribution model, which requires identical copies to lever-
age the near-zero marginal cost of duplication. Not surprisingly, commercial
implementations of this technique can be found in situations where a network
connection can be assumed to distribute the copies digitally: DRM implementa-
tions for on-line music stores and digital broadcasters [27]. We suggest combining
the best of both worlds by introducing diversity after distribution.

The ideas are discussed against a specific model of a tamperer’s behavior: the
locate-alter-test cycle (Section 2). It has been long understood implicitly that
there are many similarities between tampering and debugging. In this model,
we make these similarities explicit. As a result, the techniques presented to
counter tampering leverage known difficulties from the domain of debugging:
non-deterministic behavior (from the viewpoint of the program) and the funda-
mental limitations of testing (for every input and every environment). Despite
originating from a specific model, the techniques increase the workload to create
a fully functional patched version in a more general attack model, which assumes
only that behavioral changes are made by modifying the program itself.

In this line of work, we make the run-time execution of the code unique,
based upon additional chaff inputs (such as time, hardware identifiers, etc.) and
variable program state, including additional fake input dependencies. The goal
is twofold: (i) To make it harder for an attacker to zoom in on a point of failure
and (ii) to limit the impact of a successful attack to a short period of time,
a particular computer, a subset of the input space, etc. The underlying ideas
are that (i) an attacker typically repeats the execution of the program with a
particular input and slowly zooms in on the part where he thinks a vulnerability
may occur. This becomes harder if the execution cannot be replayed at will, and
(ii) if we can fool an attacker into believing that he has succeeded for a longer
period of time, we can delay the feedback-loop of software tampering. These
goals and high-level ideas are motivated in Section 3.
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On a lower level, the technique requires a number of basic operations. Some
of these operations have been dealt with extensively in academic literature. This
paper contains a discussion of operations which have received less attention:
(i) a concealed way to augment the user-observed input with chaff input, (ii)
a criterion to select fake state and input dependencies and (iii) a diversifier
to generate syntactically different, yet semantically equivalent pieces of code.
These operations are discussed in Section 4-5. An experimental evaluation of
the diversity that can be achieved by a practical implementation and the cost of
these techniques in terms of code size and execution time is given in Section 6.
Related work is the topic of Section 7, and conclusions are drawn in Section 8.

2 Low-Level Debugging Versus Tampering

Debugging and tampering are similar in many respects: many of the same tech-
niques and tools are used in both disciplines. Debugging software is about finding
and reducing the number of defects in a computer program to make it behave as
the software provider intends. Likewise, tampering is about finding and reducing
the number of undesired features to make it behave as the user desires.

The incentive to tamper with software thus originates from the difference
between the behavior intended by the software provider and the behavior desired
by the user. This difference can take on many forms; e.g.:

– Some software does not want to install without a valid license key. To some
users, this is undesired behavior.

– Software may prohibit the printing of certain documents if a user does not
have the right privileges. Many users find this cumbersome.

– Gamers may find it annoying that, e.g., they cannot see through walls, or
that their health decreases when they get shot.

– Many users do not want their evaluation version to stop working after the
evaluation period.

– Some people find it annoying that their credit card gets charged when they
listen to music in a digital container, or when they watch pay TV.

Put another way, debugging is about transforming the semantics encoded in
the program to the semantics intended by the software provider. Tampering is
about transforming the semantics encoded in the program to the semantics de-
sired by the user. Therefore, it should be no surprise that both disciplines are
alike. Many tools, such as IDAPro and SoftICE, and many techniques, such
as breakpoints and slicing, have been originally designed for debugging, but
are heavily used in tampering. The main difference is that during debugging, a
higher-level representation of the program is often available (source code, speci-
fication, etc.), while tampering typically starts from machine code or bytecode.

Similar to the edit-compile-test cycle of debugging, tampering is typically a
cyclic process. Since tampering is usually done at a low level, the compile phase
can be eliminated. Furthermore, we can split up the edit phase, leading to the
following cycle:
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1. Locate the origin: To turn the observed undesired behavior into desired
behavior, a tamperer first needs to find the origin of the undesired behavior.
For example, the displayed health of a gamer is only a manifestation of
the internal state. Locally changing the code that displays his health will
not result in the desired behavior: He needs to trace it back to where the
internal representation of his health actually gets decreased.

2. Alter the behavior: Once the origin is determined, a tamperer needs to
determine and apply a set of changes that will alter the undesired behavior
into desired behavior.

3. Test: In this phase, the tamperer checks if the behavior of the software is
as desired. If so, his work is done. Otherwise, more cycles are required.

3 Slowing Down the Locate-Alter-Test Cycle

If tampering is similar to debugging, we can argue along the same lines that
making tampering harder is the opposite of making debugging easier.

One of the key concepts in making software easier to debug and maintain is
modular design. Such design facilitates local changes and thus minimizes the
need to verify the impact of a local change on other parts of the program. Most
tamper-resistance techniques [6,7,17] have focused on doing the opposite: making
the program more inter-dependent. Existing techniques are thus about slowing
down the alter phase by requiring an understanding of a larger portion of the
program and more binary changes to possibly unrelated sections of the program
to effect a small change in the behavior of the program.

In this paper, we focus on slowing down the locate and test phases.

Slowing down the Locate Phase. Looking again at debugging, the first task
when dealing with a bug report is to reproduce the problem. This is vital, since
one cannot observe a problem and learn new facts if one cannot reproduce it.
Furthermore, it is essential to find out if the problem is actually fixed. Repro-
duction is one of the toughest problems in debugging. One must recreate the
environment and the steps that led to the problem [26].

Similarly, reproducing undesired behavior is indispensable for tampering. The
manifestation of undesired behavior needs to be traced back to its origin. Typi-
cally, a tamperer repeatedly executes the application with a particular input and
slowly zooms in on a part where he thinks the undesired behavior may originate.

This requires that execution can be replayed at will. We try to hamper this
process by choosing between different control paths based on pseudo-random
numbers, timing results, thread scheduling, etc.

In software tamper-resistance, the “bugs” are features that we want to mani-
fest every time, so it seems illogical to make their appearance non-deterministic.
We can, however, make sure that these features manifest themselves in different
ways by duplicating parts of the program, diversifying them and choosing more
or less randomly among the alternatives at run time. This makes it harder for a
tamperer to zoom in on the vulnerable part of the program, since the semantics
of the program may be constant, but the execution paths will not be identical.
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Slowing down the Test Phase. Testing is also a major issue in debugging and
software maintenance. It is very hard to foresee every input, every environment,
every usage scenario and every combination of applications [12]. Testing can
show only the presence of undesired behavior, not its absence.

The techniques discussed in this section increase the number of tests required
to manifest all occurrences of the undesired behavior. The underlying idea is
that the impact of a successful patch for a small subset of the input space, for a
limited number of computers or for a short period of time does not pose a great
threat to the software or content provider.

The time required to create a fully functional tampered version of the software
is increased by letting the tamperer believe that he has succeeded, while it works
only for a subset of the input space, or for a short period of time. Tamperers
often work by trial and error. Using incomplete knowledge about the program,
they change parts, hoping that the desired results will arise. When it is easy to
evaluate whether these results have been obtained, this process can be repeated
many times. If this evaluation takes longer (e.g., because it works for most of
the input sets most of the time), the workload increases.

Furthermore, the credibility of the tamperer in the cracker community may
decrease if he claims to have successfully patched a program, while it still behaves
as intended by the software provider on other computers.

We could for example use one type of license check in 90% of the cases and
another one in the remainder. This way, the tamperer may be fooled into believ-
ing that he has succeeded for a longer period of time. In this case, the tamperer
has done a good job if the undesired behavior appears randomly: he can just
restart the program and hope that it will work next time. However, if it is linked
to certain input patterns or hardware identifiers, the usability of the tampered
version is decreased significantly.

4 Tools of the Trade

The core mechanism behind the discussed techniques is illustrated in Figure 1.
In its simplest incarnation, a piece of code c ∈ C is duplicated, both copies
are diversified and one of them is selected at run time more or less randomly.
Note that C represents the set of syntactically correct pieces of code in whatever
language it is written.

This section provides more detail on two aspects related to the input of the
opaque predicates. Firstly, we present techniques to augment the user-observed
input with chaff input as a source of randomness. Secondly, we discuss the usage
of variable program state at a program point – e.g., as fake input dependencies.
Finally, we also look into more detail on how to generate diverse copies of a piece
of code, as we believe that this has not been discussed in sufficient detail in other
publications. Due to the extent of the discussion, it is in a separate section (5).
Other aspects, such as the creation of the opaque predicates and the rewriting
of software, have been discussed elaborately elsewhere.
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Fig. 1. The basic mechanism behind the implementation

4.1 Chaff Input

We say that run-time randomization delays the locate phase if it introduces
diversity during a single “tamper session” – i.e., if the randomization takes place
even on a single computer, for the same user-observed input, and for a limited
period of time (one or a few days). Conversely, run-time randomization is said to
delay the test phase if it requires multiple tamper sessions – i.e., the tampering
itself needs to be repeated for different computers, for different user-observed
inputs, and for different periods of time.

Under these specifications, chaff input is needed to delay the locate phase. This
will be used as a source of pseudo-randomness, which will then serve as input to
the opaque predicates. Note that chaff input is likely to stand out in command-
line applications, as there is typically little difference between the user-observed
and the fully specified input. However, real-life interactive applications already
make use of threads, timing information, information about mouse movement,
on-line content, etc., making them more suited for this technique.

We now discuss some sources of chaff input.

– Scheduling of Threads. In multi-threaded applications, several threads
may interact with one another in a non-deterministic manner (from the view-
point of the application). The actual scheduling depends on the operating
system (and the virtual machine, if applicable), and is influenced by asyn-
chronous events such as user interaction, other processes, thread priority, etc.
Therefore, the actual scheduling is an excellent source of pseudo-randomness.
If necessary, additional threads can be created to perform part of the original
functionality, or to perform other software-protection tasks.

– Return Values of System Calls. System calls also provide a source of
randomness from the viewpoint of the application. Many system (or library)
calls return information that is changeable over different runs: system time,
unallocated memory, network traffic, load of the machine, file system, etc.
The Underhanded C Code Contest 2005 (www.brainhz.com/underhanded/)
contains examples on how to obtain pseudo-randomness in a covert way.
One of the entries leaves a matrix partially uninitialized, as a result of which
it still contains information from a previous stat()-call (stat returns file
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info, including time of last access). This type of call is common in regular
programs and will thus not quickly raise suspicion.

An interesting way of randomizing the program is to change the code
executed (not the behavior) based on the presence of a debugger. This way
an attacker could spend much time making the program behave as desired in
the debugger, only to find that it behaves differently without the debugger.

– External Service. Alternatively, we may require access to an external ser-
vice, which provides a source of randomness. Such an external service could
be a piece of trusted hardware or an on-line service.

Record/replay mechanisms and omniscient debuggers. Clearly, given a
fully specified input, the behavior will be deterministic. While the fully specified
input is often a superset of what the user perceives as input, a tamperer could
ultimately use a perfect record/replay system [22] to make the fully specified
input (including data, user interaction, communication, system calls, schedules,
etc. [26]) repeatable, thus making the execution repeatable. This way he can
track down and tamper with one of the copies of the origins of the undesired
behavior. Alternatively, he could use an omniscient debugger [5], such as the
Simics Hindsight Debugger, to back-track to the origin. Note that the general
application of these techniques can be very expensive in terms of memory re-
quirements. Therefore, a potential defense against such capabilities is to increase
the amount of state necessary for the debugger to be able to trace backwards.
This can be accomplished by maximizing the number of irreversible operations
in the program.

In any case, there will be more origins of the undesired behavior. Unless the
tamperer finds a way to automate detecting copies of that specific origin, which
is undecidable in general, he must either (i) repeat this labor-intensive method
for every copy of the origin, or (ii) make the choice between the different copies
fixed. As a result, the workload of the tamperer increases.

Fixing the choice between different copies may be complicated as well. It may
be easy automatically to find points where the different executions digress, but
some of these points may be part of the original functionality of the program.

4.2 Variable Program State and Fake Input Dependencies

The internal state at a program point is itself highly variable, and therefore
serves as an excellent source of input for the opaque variables. Furthermore, it is
less suspicious to select different execution paths based upon the internal state.

Through profiling [20], we can easily spot tuples (p, s), for which either (i) the
state s is constant at program point p for a fixed input, but variable for different
inputs; or (ii) the state s is variable at program point p even for a fixed input.
Note that, due to the nature of profiling, we cannot be certain that a state s is
fixed; we can conclude only that a state s is fixed for the tested inputs.

Tuples for which the first property holds are then candidates for introducing
fake input dependencies. As a result, execution for different inputs will differ at
places where it originally overlapped. This can thus delay the test phase.
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Tuples for which the second property holds are useful to delay the locate phase,
because they will increase the amount of information in the static representation
of the program and the number of different instructions in a trace of a particular
execution. As a result, the trace will be less “foldable,” by which we mean that
constructing a Control-Flow Graph (CFG) from the trace will result in a larger
CFG than from the original program.

Using the same argument as earlier, an attacker needs to patch at least one of
the copies, and needs to patch additional ones or remove the fake dependencies
on the program state. The latter may be harder than in the earlier case. These
kinds of choices during execution of the program are bound to be less suspicious,
since this type of choice occurs regularly during normal operation.

5 Diversity Systems

Diversity (also referred to as individualization or randomization) can be applied
in a number of different ways. The most heard-of form of randomization is prob-
ably Address Space Layout Randomization (ASLR). ASLR is a specific form
of randomization that requires no changes to the program itself. Instead, the
operating system positions key code and data areas in a random way to make it
harder to predict target addresses.

This type of defense is less viable in the malicious-host model, since we cannot
rely on the environment. The only aspect that we can control is the program
itself; thus, the randomization needs to be an integral part of it. Under these
circumstances, there are still a number of possibilities on when and where to
randomize:

– Before distribution: The static representation of the program is random-
ized before distribution.

– During installation: The static representation of the program is random-
ized when it is installed (e.g., based upon hardware, the license key, etc.)

– Between runs: The static representation of the program is randomized
between executions, comparable to metamorphic viruses.

– During execution: The dynamic execution trace of the program is ran-
domized, as discussed in this paper.

All of these types have in common that some system is needed to generate
semantically equivalent, but syntactically different versions of a piece of code.

A schematic diagram of such a “diversity system” is given in Figure 2. A
diversifier D takes as input a piece of code c and a set of nonces (numbers used
once) {1, . . . , k}, and produces a set of code pieces {D(c, 1), . . . , D(c,k )} so that
∀i ∈ [1, k] : D(c, i) has the same functionality as c, yet ∀(i, j) ∈ [1, k]2, D(c, i) is
syntactically different from D(c, j).

Similar to Kerckhoffs’ principle for cryptography (a cryptosystem should be
secure even if everything about the system, except the key, is public knowledge),
we must assume that everything about the system is public knowledge. We
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Fig. 2. Schematic of a diversity scheme

should also assume that an attacker will have access to one or more of the diver-
sified versions. Note that this is obvious in the case of run-time randomization,
as everything is embedded in the program.

5.1 Combining Diversity Systems

Rather than trying to build a single monolithic diversity system from scratch, we
chose to build upon the vast body of existing research on semantics-preserving
program transformations. Semantics-preserving transformations have been de-
veloped for a wide range of applications, such as refactoring, optimization for
size and speed, obfuscation, watermarking, instrumentation, etc.

Combining many small transformations also makes it easier to prove (or de-
bug) their semantics-preserving nature independently. If every transformation is
semantics-preserving, the combination is guaranteed to be semantics-preserving.

The goal of combining these transformations is to enlarge the set of semanti-
cally equivalent pieces of code that can be generated by the resulting diversity
system D from a piece of code c ∈ C. As usual, this is referred to as the “range”
property, ran(D, c).

The cardinality of the range of a diversity system can easily become very large.
Consider the diversity system which chooses for every instruction in the original
code whether or not to precede it by a nop-instruction. If that piece of code
consists of n instructions, then the cardinality of the range is 2n. This diversity
system has a big range, yet can be easily circumvented in most applications of
diversity. Therefore, the cardinality of the range is not a good indication of the
quality of a diversity system.

On the other hand, a diversifier E of which the range is a superset of the
range of another diversifier D (∀c ∈ C : ran(D, c) ⊆ ran(E, c)) will typically
be preferred, as this indicates that more diversity can be achieved. We will
abbreviate this relation as follows: D ⊆ E.

Choice operation. Fortunately, given two diversity systems D and E, it is easy
to create a third diversifier F for which ran(D) ⊆ ran(F ) and ran(E) ⊆ ran(F )
through the choice operation (Figure 3a): F = D∨E. This corresponds to making
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Fig. 3. Two combining operations for diversity schemes

a preliminary choice as to whether system D or E is to be used. When this is
done, D or E is used as originally defined. Note that D ∨ E = E ∨ D.

Product operation. A second combining operation (Figure 3b): F = E ◦ D,
corresponds to diversifying the program with the first diversifier D and diver-
sifying the resulting program with the second diversifier E, the nonces for D
and E being chosen independently. This total operation is a diversifier whose
transformations consist of all the products (in the usual sense of products of
transformations) of transformations in E with transformations in D.

Logging the applied transformations. Keeping track of the applied trans-
formations is important, since some applications may need to be able to recreate
the diversified copies. For example, consider randomizing programs before dis-
tribution. When updates are needed afterwards, the software provider may need
to tailor them to a specific copy. Maintaining a database of nonces requires less
storage than keeping a copy of every distributed version.

This choice operation is recorded in the resulting nonce as follows: If [1, k]
(respectively [1, l]) is the range of nonces accepted by D (E respectively), then
for i ∈ [1, k], j ∈ [1, l], the nonce becomes 0|i ∨ 1|j. (’|’ is the concatenation
operator). The nonce of the product operation then becomes i|j.

5.2 Injective Properties of a Diversity System

Nonce-injective. An important property of a diversity system is that the re-
sulting programs be in fact diverse. Therefore, we want different nonces to lead
to different programs – i.e.,

∀c ∈ C, ∀i, j ∈ [1, k], i �= j : D(c, i) �= D(c, j)

Note that the relation =: P × P denotes syntactical equivalence. We call this
property nonce-injective – i.e., ∀c ∈ C, D(c, .) is injective.

Typically, this will not be a problem for basic transformations (not a compo-
sition of other transformations). However, it may become an issue when many



Run-Time Randomization to Mitigate Tampering 163

transformations are combined using the combination operations described ear-
lier, since the product of two nonce-injective transformations is not necessarily
nonce-injective.

Injective. A transformation is injective in the traditional sense if:

∀(c1, c2) ∈ C2, ∀(i, j) ∈ [1, k]2, c1 �= c2 ∨ i �= j : D(c1, i) �= D(c2, j)

Clearly, the composition of two injective transformations is injective. Further-
more, if E is an injective transformation and D is a nonce-injective transforma-
tion, then E◦D is nonce-injective. Note that if c1 and c2 have different semantics,
c1 cannot be syntactically equal to c2. This definition is useful when c1 and c1
are two semantically equivalent, but syntactically different versions of a piece of
code (e.g., after applying a diversity system).

Disjoint diversity systems. We say that two diversity systems D and E are
“disjoint” if and only if

∀c ∈ C, ∀i ∈ [1, k], � ∃j ∈ [1, l] : D(c, i) = E(c, j)

The choice of two disjoint injective transformations (D ∨ E) is injective.

5.3 Diversity Systems in Practice

A practical diversity system may be composed of a number of transformations:
(D1 ∨D2 ∨ ...∨Dn)◦(D1∨D2 ∨ ...∨Dn)◦(D1 ∨D2∨ ...∨Dn).... The probabilities
that determine which transformation to choose in every iteration are assignable,
and may change as the result of earlier transformations. For example, it may
be useless to apply the same transformation twice. This can be recorded by
setting its probability to zero for subsequent iterations once it is selected. For a
more elaborate discussion on the selection of transformations with dependencies,
we refer to closely related work on selecting transformations in the domain of
obfuscation by Heffner and Collberg [16].

Iterated transformations. To increase the range and complexity of random-
ization, a tool can iterate and recombine a number of diversifying operators. Each
such primitive can be quite simple – e.g., referencing variables through newly
created pointers or duplicating a program statement, along with a new obfus-
cated predicate to choose one of the individualized copies. While such operators
may be insecure when used alone, iterated application can create complexity, in-
cluding emergent properties due to interaction among various transformations.
This is similar to behavior found in complex systems such as cellular automata,
and also helps to create confusion and diffusion, as in iterated application of
rounds in block ciphers and hash functions.

Selecting transformations for the composed diversity system. The in-
jective property and related properties discussed earlier prove to be a useful
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guideline in the selection of transformations to add to the mix. For example, it
is not useful to add a transformation D to a diversity system E if the range is
not increased as a result (D ⊆ E).

Clearly, injective transformations disjoint with the already present diversity
system are preferred. In practice, however, this requirement is not so stringent:
Due to the large range, the chance of actually obtaining two identical code pieces
after a number of transformations is small. If required, a hash can be computed
of every generated code piece, and newly generated code pieces can simply be
discarded if their hash matches one of the earlier ones.

Selecting nonces. In practice, it proves to be complicated to determine the
range of nonces accepted by a composed diversity system. The application of one
transformation will lead to more or fewer possibilities for the next transformation
in a way that is hard to predict without actually applying the transformation.
As the range quickly becomes unmanageable, generating all possibilities to de-
termine the range in advance is also not practically viable. Therefore, we cannot
predetermine a uniform range of nonces from which to choose in advance. Rather,
every transformation will return its range once it is selected as the next trans-
formation (and all previous transformations have been applied), after which an
element from its range is selected. The nonces are thus built dynamically during
the randomization, as shown in Figure 3, and can have variable lengths.

6 Evaluation

To get an idea of the achievable range of practical diversity systems, we have
implemented a number of diversifying transformations in the binary rewriting
framework Diablo [11]:

1. Splitting basic blocks by a two-way opaque predicate (as shown in Figure 1).
2. Inlining basic blocks with multiple incoming edges (as shown in Figure 4).
3. Inlining functions.
4. Replacing instructions by semantically equivalent instructions.
5. Reordering instructions within a basic block.
6. Inverting the condition of branches.
7. Reordering chains of basic blocks.

We have evaluated these transformatiosn on the C programs of the SPEC
2006 benchmark suite, compiled with gcc 3.2.2 and statically linked against
glibc 3.2.2. The number of choices that need to be made for the transformations
when applied to the entire benchmark is given in Table 1, normalized to choices
between 10 options. For perlbmk, e.g., we can choose independently for 83, 759
basic blocks whether or not to split them with a two-way opaque predicate. This
leads to 283,759 possible output programs (assuming we use the same predicate
every time), or a range of about 1025,214; hence the value 25, 214 in the table.
The second transformation has been limited to one round, meaning that the
candidates for inlining, namely (basic-block, edge) pairs, are all taken from the
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Fig. 4. Inlining basic blocks with multiple incoming edges

Table 1. Number of available choices x, normalized to 10 options. The range is 10x.
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1. split bbl 25214 6704 63948 6093 7289 16519 8355 7679 6380 12150 6146 8066
2. inline bbl 16434 3908 46098 3541 4313 10384 5037 4561 3732 6947 3585 4834
3. inline fun 2734 594 6800 508 803 2254 944 697 545 1039 513 999
4. select ins 20630 7340 51413 6603 7464 16203 8495 8251 6876 13210 7301 8228
5. schedule 14330 5679 31032 4741 5972 15462 6518 5985 5161 13617 4813 6450
6. flip branch 11516 3106 29803 2781 3184 7171 3676 3540 2888 5547 2803 3572
7. layout 76379 19319 183010 17954 21160 51065 23913 22655 18646 34457 18159 22777

original control-flow graph. If more rounds are allowed, the transformation can be
reapplied endlessly for constructs such as loops (a loop can be unrolled infinitely).

The bars in the table aim intuitively to indicate the per-benchmark relation
among the available choices for the different transformations.

In order to evaluate the cost of the techniques discussed in this paper, we
have evaluated the impact on the code size and execution time resulting from
the following setup: Transformations 1-3 are applied with a probability drawn
from a Bernoulli distribution with p = 0.05. As a result, the transformations
are applied about 5% of the times they could be applied. Both the original and
copied version are then diversified by randomly applying transformations 4-7.

Over the entire benchmark suite, we notice an increase of about a quarter in
code size. This is slightly higher than what one may expect at first (about 15,8%
from three times 5% increase), because the candidates for transformation 2 are
(basic-block, edge) pairs, which is more than just basic blocks. The same holds
for transformation 3 where the candidates are (function, call-site) pairs.

The slowdown is on average 7%. This slowdown results from (i) the evaluation
of the opaque predicates, (ii) additional control-flow instructions, and (iii) worse
cache behavior due to less code locality and increased code size. Note that the
slowdown is more variable than the code-size increase, as it depends on the
execution count of the transformed code.

7 Related Work

Software Diversity. Software diversity was first used for fault tolerance as an
extension of the idea of using redundant hardware to mitigate physical faults.
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Fig. 5. Code bloat and slowdown for an exemplary transformation

The two main directions are recovery-block software [21] and N-version program-
ming [2]. Both rely on hand-written, semantically equivalent modules. Recovery-
block software requires an acceptance test, and the implementation with the
highest priority to pass the test wins. N-version programming compares the out-
puts produced by several versions and propagates only consensus results.

Software diversity or individualization as a security mechanism against mali-
cious code attacks was proposed by Cohen [8] under the term “program evolu-
tion.” Since then, numerous transformation techniques have been presented, in-
cluding memory-layout randomization [13] and instruction-set randomization [4].
It has been shown that these techniques are also vulnerable to attacks [23,24].

Other research assumes the presence of diversity and studies the assignment
of distinct software packages to individual systems in a network [18], or uses
different versions in a framework for detection and disruption of attacks, similar
to N-version programming for fault tolerance [10].

Software diversity as a protection mechanism against a malicious host seems
to have received less attention. Existing work is focused on randomization before
distribution. Anckaert et al. [1] propose to rewrite the program in a custom
instruction set and to ship it with a matching virtual machine. Zhou et al. [27]
present code transformations based upon algebraic structures compatible with
32-bit operations commonly present in code.

Software diversity has also been used to hide malicious code, such as viruses.
Self-modifying viruses will typically change their binary representation before
propagation. Early implementations simply encrypt the body of the virus with
a different key, leaving the decryption routine vulnerable to signature-based de-
tection. More recent viruses diversify the decryption routine as well, or contain
a metamorphic engine to rewrite themselves completely (e.g., W32.simile1).

Tamper-Resistance. Most techniques to protect the integrity of a program are
based on checksumming segments of the code [6,17]. A generic attack against
such schemes has been devised for the x86 through the manipulation of processor-
level segments, and for the UltraSparc through a special translation look-aside
buffer load mechanism [25]. A countermeasure against this type of attack relies
on self-modifying code [15]. Related techniques [7] hash the execution of a piece

1 http://securityresponse.symantec.com/avcenter/venc/data/w32.simile.html
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of code, while others have looked at the reaction mechanism in more detail. Once
tampering is detected, appropriate action needs to be taken. If the manifestation
of this action is too obvious, it can be easily tracked down. Delayed and controlled
failures [14] are a way to make it harder to locate the reaction mechanism.

Obfuscation. Software obfuscation [3,9] aims to make programs harder to un-
derstand and has many parallels with software diversity. While the goals are
different, many of the techniques developed for obfuscation can be parameter-
ized for diversity purposes. Typically, the versions of a piece of code generated
by a diversity system will be obfuscated. If the different versions are too easy to
understand, it may be easy to match or find semantically equivalent code.

8 Conclusion

We modeled the tamperer’s behavior starting from parallels between debug-
ging and tampering. As such, the techniques presented to mitigate tampering
leverage known difficulties from debugging: non-deterministic behavior and the
fundamental limitations of testing. An experimental evaluation shows that diver-
sity systems can generate many different semantically equivalent code sequences
and that the cost of the applied techniques is acceptable for most applications.
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