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Abstract— Quadrature bandpass (QBP) Σ∆ ADCs require a
feedback path for both the I and the Q part of the complex
feedback signal. A complex DAC could give this feedback with
near-perfect I/Q balance. Still, the mismatch between the unit
elements of the complex DAC introduces mismatch noise that
should be shaped out of the signal band with dynamic element-
matching (DEM) techniques. To select the unit DAC elements of
the complex multibit DAC, the well-known data directed swapper
is generalized towards a complex structure and the necessary
constraints for its correct functioning are derived. Additionally,
a hardware efficient structure is presented: the reduced butterfly
shuffler. Here, some of the QBP swapper cells are replaced by
bandpass (BP) swapper cells. Also, great attention is paid to the
interconnection pattern of the data directed swapper to prevent
instability.

I. INTRODUCTION

In low-IF receivers, quadrature bandpass (QBP) Σ∆ modu-
lators provide interesting advantages over a pair of real band-
pass Σ∆ modulators [1]. Such a QBP Σ∆ modulator takes
in a complex analog input and produces a complex digital
output which represents the complex input within a narrow
bandwidth. As such, it performs complex analog-to-digital
conversion. Complex signals are a convenient representation
of a pair of real signals. One signal is interpreted as the real
part (indicated with sub- or superscript I) and the other signal
as the imaginary part (indicated with sub- or superscript Q)
of the combined complex signal [2].

Whereas traditional Σ∆ modulators employed 1-bit quan-
tization, multibit Σ∆ ADCs achieve a higher resolution and
alleviate stability problems [3]. However, multibit DACs are
not inherently linear since they suffer from mismatch be-
tween the DAC elements. Furthermore, most of the QBP
Σ∆ modulators are using two separate feedback DACs, one
real DAC for the feedback of the in-phase (I) path, another
one for the quadrature (Q) path. For this combination, the
mismatch results in a non-linear error, called DAC mismatch
noise, and in path mismatch between the I- and Q-path.
This path mismatch causes both the input signal and the
quantization noise in the image band to fold into the desired
signal band. For QBP modulators this is highly unwanted since
quantization noise is not attenuated in the image band [4], [5].

An interesting approach, to solve the mismatch between
the paths, is to merge the two real DACs into one complex
multibit DAC structure [5], [6]. The architecture of such a

complex multibit DAC is shown in Fig. 1. Next to a DAC
bank consisting of N unit elements, it contains an element
selection logic block (ESL). The task of the ESL is to map
each complex input sample x[n] to complex selection signals
xi[n] such that the sum of the N selection signals equals x[n].
Each of the N unit elements can be selected in three ways.
If the selection signal xi = 1, the unit element is selected
‘I’ and gives feedback to the I-path. When xi = j, the unit
element is selected ‘Q’ and gives feedback to the Q-path and
when xi = 0, the unit element is unselected and generates no
feedback.
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Fig. 1. A complex multibit DAC with ESL.

Since all the unit elements in a complex DAC belong to a
common pool, it is possible to process the I and Q signals
in exactly the same way. As a result, the difference between
the I- and Q-path disappears and the problem related to path
mismatch can be solved. Still, the mismatch between the unit
elements of the complex DAC introduces mismatch noise. It
should be guaranteed that the power of this error is shaped
out of the signal band with dynamic element-matching (DEM)
techniques.

Thus far, DEM schemes based on the data directed swapper
are used to whiten [7] or to lowpass shape [8] the mismatch
errors. [9] shows how the data directed swapper can be
endowed with arbitrary real mismatch shaping characteristics.
Recently, a more accurate technique to obtain a second order
bandpass shaping with the data directed swapper was intro-
duced [10]. All these structures are only applicable for real
DAC structures. In the next section it is shown how the well-
known data directed swapper can be generalized towards a
complex structure. This new structure allows QBP shaping of
the DAC noise. As such, it forms an alternative for the complex
tree structured DAC of [5].
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II. A COMPLEX, DATA DIRECTED SWAPPER

A. Architecture

The complex data directed DAC consists of a digital
encoder, a data directed ESL and a unit DAC bank. In
Fig. 2, a DAC architecture with 4 (b=2) unit elements
is shown to illustrate the principle. The complex data di-
rected ESL requires that its N=2b input signals are lim-
ited to {0, 1, j}. However, since the input of the complex
data directed DAC x[n] is interpreted as a complex integer,
x[n] ∈ {xI [n] + jxQ[n] : 0 ≤ xI [n], xQ[n] ≤ 2b−1}, a digital
encoder is necessary to encode the complex integer x[n] into
the three-level format. This is the task of the digital encoder
in Fig. 2. It will decompose each complex input sample x[n]
into four three-level signals (x2,1[n], ..., x2,4[n]) such that its
sum equals x[n]. This decomposition is memoryless and time
invariant.
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Fig. 2. Complex data directed DAC with a four element unit DAC bank.

The complex data directed ESL itself consists of a (bxb)
matrix of swapper cells Sk,r, where k and r denote the layer
number and the position within the layer respectively. Each
swapper cell has two inputs xk,2r−1 and xk,2r and two outputs
which are connected to two different swapper cells of layer
k-1. At each sample time n, each swapper cell determines its
outputs by routing its inputs either straight through or crossed.
This way, the ESL will dynamically assign every input signal
of the ESL to one of the output signals x0,i[n].

The behavior of the swapper cell is based on the swapper
sequence sk,r. This sequence is defined as the difference
between the two outputs. To illustrate this, the input/output
relationship of swapper cell S1,1 is given by:

x0,1[n] = 1
2 (x1,1[n] + x1,2[n] + s1,1[n])

x0,2[n] = 1
2 (x1,1[n] + x1,2[n] − s1,1[n])

(1)

As shown in [3], [11], the DAC mismatch error is a linear
combination of the swapper sequences. So, if each swapper
sequence is calculated as a Kth order shaped sequence that
is uncorrelated with the sequences of the other swapper cells,
then the DAC error will be a Kth order shaped sequence.

These swapper sequences need to fulfill the following
constraints:

sk,r[n] =




0 if xk,2r-1[n]+xk,2r[n] is 0, 2 or 2j
±1 if xk,2r-1[n]+xk,2r[n] is 1
±j if xk,2r-1[n]+xk,2r[n] is j
±1 ∓ j if xk,2r-1[n]+xk,2r[n] is 1+j

(2)

to ensure that the real and imaginary part of the outputs of
the swapper cells are natural numbers after the division by
two in eq. (1) and that the output of these cells is restricted
to {0, 1, j}.

B. QBP Shaper

The QBP shaper will calculate the swapper sequence as a
QBP shaped sequence. Essentially, the QBP shaper consists
of a digital domain QBP Σ∆ modulator with no input sig-
nal, where the two quantizers are replaced by one restricted
quantizer (see Fig. 3). The restricted quantizer tries to fol-
low its inputs (svI

k,r[n], svQ
k,r[n]) while forcing its outputs

(sI
k,r[n], sQ

k,r[n]) to fulfill the constraints of eq.(2).
The restricted quantizer can be modelled as an additive error

L(z) = LI + jLQ, leading to the linear model of Fig. 3 on the
right. The complex loopfilter H(z) ensures that this additive
error is shaped. With Sk,r(z) denoting the Z-transform of
the switching sequence and MTF(z) the complex mismatch
transfer function, we have:

Sk,r(z) =
1

1 + H(z)
L(z) = MTF(z)L(z) (3)
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Fig. 3. QBP shaper and its linear model.

In general, the output sI
k,r[n] (resp. sQ

k,r[n]) has the sign

of its state variable svI
k,r[n] (resp. svQ

k,r[n]) or equals zero

in case xI
k,2r-1[n]+xI

k,2r[n] (resp. xQ
k,2r-1[n]+xQ

k,2r[n]) is even.
However, two special cases can occur:

1) In case of a zero state variable, its sign is indefinite and
the sign of the output can be chosen (e.g. alternately) if the
input is odd.

2) If both real and imaginary parts are odd, a contention
can appear if both state variables have the same sign. In
this case, the state variable with the largest absolute value
is given preferential treatment. This means that this state
variable will decide the sign of its corresponding output.
The other output will then have the opposite sign. If both
state variables are equal, we could chose to give preferential
treatment to the I-path. However, the I- and Q-path of the
complex DAC are now not treated in the same way, resulting
in path mismatch. Therefore, we suggest to toggle between
the preferential treatment of the two paths so that, on average,
neither the I- or the Q-path is preferred. As a result, the I and
Q signals are treated in exactly the same way and will not
suffer from path mismatch.

C. Thermometer Encoder and Interconnection

A possible implementation of the digital encoder of Fig. 2,
which encodes the complex integer x[n] into the correct three-
level format {0, 1, j}, is a combination of two thermometer
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encoders. One thermometer encoder is used for the I-path,
the other one for the Q-path, see Fig. 4. This digital encoder
follows the transformation equations:

xi[n] =
{

1 if i ≤ xI [n]
0 otherwise

(4)

for 1 ≤ i ≤ N/2 and:

xi[n] =
{

j if N − i < xQ[n]
0 otherwise

(5)

for N/2+1 ≤ i ≤ N . This is also illustrated at the very right
of Fig. 4.
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Fig. 4. Complex digital encoder with two real thermometer encoders.

Concerning the interconnection of the digital encoder with
the data directed ESL, it should be avoided that any QBP
swapper cell has strictly real or strictly imaginary inputs.
Suppose that the sequence xI

k,2r-1[n]+xI
k,2r[n] is strictly real

for every sample time n, then sQ
k,r[n] equals zero due to the

constraints in the restricted quantizer (eq. (2)). In this case, the
model for the restricted quantizer as two additive error terms
is not justified. Indeed, since sQ

k,r[n] equals zero all the time,
the quadrature feedback path disappears, as shown in Fig. 5.
The same conclusion can be drawn for a strictly imaginary
valued sequence xI

k,2r-1[n]+xI
k,2r[n].
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Fig. 5. QBP shaper and its linear model in case of a strictly real valued
sequence xI

k,2r-1[n]+xI
k,2r[n].

In the situation of Fig. 5, the shaping of the sk,r[n] sequence
will deviate from eq. (3):

Sk,r(z) =
1

1 + H′(z)
LI(z) = MTF′(z)LI(z) (6)

Here, H′(z) is the Z-transform of the real part of h[n]:

H′(z) =
H(z) + H∗(z∗)

2
(7)

Obviously MTF′(z) deviates from MTF(z), which may lead
to unexpected behaviour. We have verified that for first order
QBP shaping, good performance is still ensured since the QBP
shaping is altered into a BP shaping with similar properties.
This way first order QBP mismatch shaping is guaranteed
to be “fail-safe”. However, it was found that instability can
occur for higher order QBP mismatch shaping. In this case,
it is important to prevent this situation. Fortunately, this is
easily achieved by appropriately choosing the interconnection
pattern.

Fig. 6 show such an appropriate interconnection pattern.
Here, the outputs of the thermometer encoder I and Q are
cross-coupled, so that every swapper cell has a complex input.
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Fig. 6. Complex data directed DAC.

D. Reduced QBP Shaped Data Directed DAC

In Fig. 7, an alternative interconnection pattern is shown. In
this ESL topology, we have opted for keeping the I- and Q-
path separated as long as possible (marked with the dash dot
line). Only in the last layer, there is a coupling between the
I- and Q-path. Note that now the input of the QBP cells are
strictly real or imaginary. This way the QBP shaped swapper
cells of all but the last layer should be replaced by real BP
shaped swapper cells such as those presented in [10].
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Fig. 7. Reduced QBP data directed DAC.

The replacement of QBP- into BP shaped swapper cells
results in a more hardware efficient implementation since real
BP shaped swapper cells use less hardware than complex
QBP shaped swapper cells. In order to get a first idea of
the hardware reduction, we performed actual digital gate-level
synthesis of the required hardware of both structures. This
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design experiment reveals that in most cases, the hardware
complexity is almost reduced by a factor of two.

III. SIMULATION RESULTS

To illustrate the effectiveness of the proposed approach,
extensive simulations, for the case of first order fs/4 mismatch
shaping, were performed. As a test structure, a complex
DAC, with the presented reduced data directed swapper was
employed. The same first order fs/4 QBP loopfilter as in
[5] was used to obtain the swapper sequences. The DAC
was placed in the feedback path of a typical discrete time
Σ∆ modulator. A fourth order NTF(z) was used with an
H∞=1.5 and a center frequency fc=0.25. The complex DAC
bank contains 8 unit DAC elements which were assigned a
zero-mean random mismatch with a standard deviation σ of
1%. The Σ∆ modulator was stimulated with two different
complex input signals. One is situated in the in-band region at
f=0.2501, the other one in the mirror band at f=0.7502. The
amplitude of both signals is -6dB of full scale.

In Fig. 8, the DAC mismatch error spectrum is shown for
the case one of the paths gets preferential treatment when there
is a choice in the restricted quantizer. We notice that there is
some signal feedthrough and signals in the image band that
alias into the desired signal band and vice versa. This folding
is the result of the fact that the I- and Q-path of the complex
DAC are not treated in the same way.
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Fig. 8. DAC error spectrum in case one of the paths of the reduced data
directed swapper gets preferential treatment (12 times averaged 128K FFT).

In Fig. 9, the DAC mismatch error spectrum is shown for
the case the I- and Q-path of the complex DAC are treated in
the same way by toggling between the preferential treatment of
the two paths so that, on average, neither the I- or the Q-path
is preferred. Here no folding of the signals occurs.

The DAC error spectra in case of the data directed swapper
are omitted due to place limitation, but the same conclusion
as for the reduced data directed swapper could be drawn.
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Fig. 9. DAC error spectrum in case the paths of the reduced data directed
swapper are treated in the same way (12 times averaged 128K FFT).

IV. CONCLUSION

Realizing the feedback structure of the multibit QBP Σ∆
ADC with one complex multibit DAC has the advantage that
path mismatch disappears in contrast to a realization with two
separate real multibit DAC structures. In this work, we have
shown how the real data directed swapper can be adapted
toward a quadrature bandpass structure. We have shown that it
should be avoided that any QBP swapper cell has strictly real
or strictly imaginary inputs. Additionally, we presented a novel
structure with lower hardware complexity, i.e. the reduced data
directed swapper. Here, some of the quadrature bandpass cells
are replaced by more hardware efficient bandpass cells.
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