
Formally Modeling Microprocessor Caches and Branch Predictors

Hans Vandierendonck1 Jean-Marie Jacquet2 Bavo Nootaert1

1Dept. of Electronics and Information Systems

Ghent University

Belgium

{hans.vandierendonck,bavo.nootaert,kdb}@elis.ugent.be

Koen De Bosschere1

2Institute of Informatics

University of Namur

Belgium

jmj@info.fundp.ac.be

Abstract: - Microprocessors are subject to many hard constraints related to performance, power

consumption, worst-case execution time, reliability, dependability, etc. Prooving any of these

properties is currently nearly impossible. We believe that such proofs could be made if formal

models of microprocessors were available. For these reasons, we formally model the operation of

caches and branch predictors. These are structures that are present in virtually all microprocessors

and have a high impact on the above mentioned system properties.

Key-words: - operational semantics, microarchitecture, cache

1 Introduction

State-of-the-art processors feature several 100
millions of transistors, yielding an extremely high
level of complexity. As processors are composed of
semi-independent parts (e.g. pipelines, instruction
queues, caches, branch predictors) gaining insight
is facilitated by studying each component in sep-
aration. However, each of these components gains
in complexity as the research field matures. E.g.
very few people really understand all the intricate
details of modern branch predictors [2, 3, 5]. This
inherent complexity hampers insight and may slow
new research findings as well as wide-spread adop-
tion of these techniques.

With high degrees of complexity, it becomes dif-
ficult to make hard claims about the performance
of the structure. Hard claims are essential when
reliability, dependability or real-time constraints
are concerned. In such cases it does not suffice
to show an average performance. Rather, it is re-
quired that one proves that a minimum perfor-
mance will be obtained with a minimum guaran-
teed probability. For these reasons, we develop

formal models of processor components. The goal
of these models is to reason about these compo-
nents and to formally prove their properties.

This paper presents a formal model of caches
specified using operational semantics. Caches are
well understood, which is why our first attempt
is applied to caches: we have sufficient knowledge
to debug our models and to steer the construc-
tion of the model in the right direction. We claim
without proof that this model can also be readily
applied to branch predictors as well as other types
of predictors.

2 Basic Model

Following [4], we shall formally describe the
computation of a program as a structured com-
bination of elementary steps. In this approach,
steps are characterized as moves from snapshots of
the execution to snapshots of the execution. Such
a snapshot varies from one language to another
as well as from what is observed. In our context
of memory structures, we shall consider snapshots
as pairs composed of the content of the memory

1

structure and of the sequence of instructions ac-
cessing this structure. Formally, the set of situa-
tions Ssit is defined as follows

Ssit ::= Stable × Ssinst

where the set of memory structures Stable and the
set of instructions Ssinst are themselves defined
below.

2.1 Notations

In order to do so, we first introduce some aux-
iliary notations.

For a set E, we denote by E<ω the set of finite
sequences of elements of E. The empty sequence is
denoted by λ. The sequence obtained by prepend-
ing element e to the sequence S is denoted as e.S.

The set of booleans will be denoted by B and
the set B

<ω by B.
Note that numbers in a binary representa-

tion have their least-significant bits at the head
of the sequence, i.e., the decimal number 13 is
represented in 2-complement binary notation as
(1.(0.(1.(1.λ)))).

2.2 The Trace of Instructions

The instructions in a program are executed se-
quentially: each instruction operates on the pro-
cessor state as it is left by the instructions exe-
cuted before it. The sequence of executed instruc-
tions characterises the execution of the program.
The presented methodology departs from this se-
quence or trace of instructions. Each instruction
is identified here by three items:

• the instruction address namely the value of
the program counter,

• the argument address namely the memory to
be addressed in a load/store instruction or the
branch target address in a branch instruction,

• additional information to be specified in spe-
cific context (e.g., the true branch direction).

At most two of these items are required at the
same time. E.g., a data cache is accessed with

the memory address and an instruction cache is
accessed with the program counter. It suffices
to have two fields, namely an identifier field that
identifies the cell in the table that will be accessed,
and the data field that represents the data that
will be stored there. Depending on the structure
that is modelled, we place different information in
the identifier and data fields. Both items are es-
sentially sequences of bits. We can therefore define
their sets as B. As a result, the set of instructions
Sinst is defined as follows:

Sinst = B × B

As we shall consider sequential programs only,
the set Ssinst can be defined as follows.

Ssinst = (B × B)<ω

2.3 Tables

Structures are modelled as tables. A table has
S rows and A columns. Each element in the table
is composed of an address argument and a predic-
tion information relevant to the type of prediction
performed. We shall formally define such a table
as a function that given a row number returns a se-
quence of information about the cells on that row
of the table. The cell information is defined as a
pair of sequences of bits. To make the framework
simple, we define the structure as

Crow = (B × B)<ω

Ctable = N → Crow

with the understanding that if the given row or
column exceeds those indicated by S and A then
the undefined value ⊥ is returned. Moreover, by
abuse of language, we use ⊥ to denote the table
with all cells undefined.

The tables are operated by means of three func-
tions. First an index function is used to determine
which row of the table is affected by an instruc-
tion. Such a function is thus of type

Index = B → N

Second, an output function determines the value
read from the table based on the contents of the
set:

Output = Crow × Sinst → B

2

The output function either returns the value read
from the memory or any value computed thereon
(e.g., the prediction in case of a predictor). Third,
an update function is used to modify the row as a
result of the execution of the instruction. It is of
type

Update = Crow × Sinst → Crow

Summing up, structures are characterized by six
features: the number of rows (S), the number of
columns (A), the contents of the cells (C), the in-
dex function (I), the output function (O) and the
update function (U). This leads to the following
formal definition of the set of structures Stable:

Stable = N×N×Ctable×Index×Output×Update.

2.4 Operational semantics

Given the above formal definitions, the execu-
tion can be defined as sequences of small steps.
The allowed small steps are characterized formally
by the relation →. Intuitively, (X,R) → (X ′, R′)
means that the computation moves from the state
described by strucure X and sequence of instruc-
tions R to the new state described by structure
X ′ and sequence of instructions R′. To capture
misses, we introduce a label on the arrow: µ is
used to denote a miss and ν to indicate no miss.

Formally, the relation → is defined as the small-
est relation of

Stable × Ssinst × {µ, ν} × Stable × Ssinst

that satisfies the following properties:

< (S,A,C, I,O, U), (id, data).R >
µ
→ < (S,A,C ′, I, O, U), R >

if

c = C(I(id))
c′ = U(c, (id, data).R)
C ′ = C overridden with I(id) → c′

O(c, (id, data)) = data

< (S,A,C, I,O, U), (id, data).R >
ν
→ < (S,A,C ′, I, O, U), R >

if

c = C(I(id))
c′ = U(c, (id, data).R)
C ′ = C overridden with I(id) → c′

O(c, (id, data)) 6= data

The operational semantics

O : Ssinst → {µ, ν}<ω

is then defined as the sequence of labels produced
during the computation: for any sequence of in-
structions R,

O(R) = x1 · · · xn

such that

<⊥, R >
x1→< CC1, R1 >

x2→ · · ·
xn→< CCn, λ >

3 Application to Caches

The model described in the previous section
is general enough to define all caches and vari-
ous predictors, such as branch predictors, value
predictors, dependence predictors, etc. In this
section, we apply the model to describe direct
mapped and set-associative caches [6].

A cache is a small memory that holds the data
or instructions that were most recently used by the
processor. Because the cache is much smaller than
the main memory, only part of the data can be
stored in the cache at the same time. When a data
item is requested by the processor, the address of
the data is used to perform an associative search
through the cache, i.e., the cache is searched for
a block of data that is tagged with the requested
address. Every block of data has the same size,
namely B bytes, and its starting address is aligned
(i.e., it is a multiple of B).

Either instructions or data can be fetched from
the cache. Instructions are identified using the
program counter, while data is identified using the
memory address that is specified by the load/store
instruction. Hence, the identifier field of the ele-
ments in the trace is either equal to the program
counter (instruction fetches) or the data memory
address (data loads and stores). The data field
in the trace is always 1 to facilitate counting the
number of hits and misses. The output function

3

in
d
e
x
 f
u
n
c
ti
o
n

address

address

31 ... 5 4 ... 0

blocks

block
offset

extractcompare

hit/miss data
Figure 1. Indexing into a direct mapped cache
with 32 byte blocks. It is assumed that ad-
dresses are 32 bits long.

returns a 1 on a cache hit and a 0 on a cache
miss. This value is compared to the data field in
the trace to select between a µ (cache miss) and ν

(cache hit) transition.

3.1 Direct Mapped Caches

The direct mapped cache is organised as a ta-
ble with S rows and one column. Every row can
hold one block of data and also stores the address
of that block (Fig. 1). To limit the search time,
every block of data can be stored in only one row
of the cache. This row is determined by the in-
dex function, that maps the address into the range
0 . . . S − 1. When the row pointed to by the in-
dex function holds the requested block, then that
block is read from the cache and the requested
words are extracted from the block. If the data is
not present in that row then the cache does not
hold the data at all. It is subsequently fetched
from the main memory and replaces the block in
the designated row.

A direct mapped data cache with B-byte cache
blocks and S sets is defined as:

Cdm = (S, 1,⊥, Icache, Ocache, Udm)

It is assumed that S and B are powers of 2. The

index function selects the row where the block is
potentially stored. It has the responsibility to dis-
perse active blocks of data equally over all sets of
the cache, such that the cache is efficiently used. A
commonly used index function selects the log2(S)
lowest address bits of the block offset, i.e., the low-
est log2(B) address bits are dropped and the next
log2(S) bits are used as row selector. This method
of indexing is so frequently used that we define the
function bitsel for convenience:

bitsel(id, blocksize, sets) =cid÷blocksizeblog2(sets)

For numbers in a binary representation, dividing
by a power of two corresponds to removing the
log2(n) low-order bits, so we define S÷n in terms
of an operator on sequences. The auxiliary func-
tion cSbn truncates the sequence S to the first n

elements. The indexing function is now given by
Equation 1.

The output function returns a 1 on a hit and
a 0 on a miss (Equation 2). The update function
always overwrites the cell with the requested cache
block. Hence, the row of the table contains the
referenced cell (Equation 3).

3.2 Set-Associative Caches

Set-associative caches reduce miss rates by in-
creasing the number of columns of the table. In
order to keep the table size constant, the number
of rows is proportionally decreased. This design
introduces more freedom to place blocks: every
block can be stored in every cell of the row in-
dicated by the index function. The number of
such cells is called the degree of associativity of
the cache. When a block is loaded into the cache,
then it has to be decided which cell in the target
row will be overwritten with the new block. This
task is the responsibility of the replacement pol-

icy and we model it here as part of the update
function. The replacement policy is always kept
simple: it is either a simplified variant of the LRU
policy or a round-robin policy (similar to FIFO).

A set-associative cache with S sets, B byte
blocks and a degree of associativity equal to A

is defined as:

Csa = (S,A,⊥, Icache, Ocache, Usa)

4

The index function:
Icache((id, data)) = bitsel(id,B, S) (1)

The output function:

Ocache(λ, (id, data)) = 0
Ocache((sid, sdata).c, (id, data)) = 1 if sid = id ÷ B

Ocache((sid, sdata).c, (id, data)) = Ocache(c, (id, data)) otherwise

(2)

The update function:
Udm(c, (id, data).R) = (id ÷ B,⊥).λ (3)

Figure 2. Operational semantics of a direct mapped cache

where Icache and Ocache are defined above for di-
rect mapped caches. Usa can be defined in various
ways for set-associative caches.

A common update policy is the least recently

used replacement policy (LRU), overwriting the
block that was least recently referenced. Hereto,
we place all blocks in the same row in a sequence,
with the most recently referenced block in the first
position and the least recently referenced block in
the last position. Thus, when the referenced block
is present in the cache, then it is removed from the
sequence and inserted again at the front. If the
block is not present, it is simply inserted at the
front. The LRU policy is defined by Equation 4
where the auxiliary delete(a, S) deletes all occur-
rences of the element a from the sequence S, while
leaving all other elements in their original order.

The first-in first-out policy (FIFO) overwrites
the cell that was least recently loaded. The cells in
the sequence for one row of the table thus matches
the order that the blocks were loaded. If a block
is referenced and it is present in the cache, then
the order of the blocks is unchanged (Equation 5).

4 Application to Branch Predictors

The goal of branch prediction is to speed up the
execution of a program by speculating on the out-
come of a branch. The instructions that logically
come after the branch are executed speculatively,
i.e., it is not yet known whether they really do
have to be executed. When the branch target was
predicted correctly, a speedup is thus achieved. If
the branch prediction is incorrect, then the spec-
ulatively executed instructions are discarded.

A distinction is generally made between condi-

tional branch prediction and branch target predic-

tion. A conditional branch instruction determines
the next instruction to execute based on a con-
dition, typically the result of a comparison (e.g.:
is the loop counter less than 10?). Only the out-
come of this comparison needs to be predicted to
know the next instruction address. The second
case is more general. Here, the next instruction
address itself is predicted. This type of prediction
is specifically important for branches that com-
pute the their target at run-time (e.g., when the
target is fetched from memory).

In both cases, the identifier field in the trace is
the program counter of the instruction. The data
field is the followed branch direction (taken or not-
taken) in the case of conditional branch predictors
and the branch target address (i.e., the program
counter of the next instruction in the trace) in the
case of unconditional branch prediction.

4.1 Bimodal Branch Predictor

A bimodal branch predictor is a conditional
branch predictor and outputs for every branch a
one when the branch is predicted taken and a zero
when the prediction is not-taken. It is organised
as a table of saturating up/down counters (Fig-
ure 4(a)), each b bits wide. The program counter
of the branch instruction selects a counter in the
table, whose value determines the prediction. The
branch is predicted taken for high values (≥ 2b−1),
and not-taken for low values (< 2b−1).

The counter is updated based on the actual
branch outcome. It is incremented by 1 for taken
branches, saturating at 2b−1, and decremented by
1, saturating at 0, otherwise. Note that the coun-
ters are not tagged, i.e., all branches that map to
the same row share the same counter.

5

The update function for the LRU replacement policy:

Usa,LRU (c, (id, data).R) =c(id ÷ B,⊥).delete((id ÷ B,⊥), c)bA (4)

The update function for the FIFO replacement policy:

Usa,FIFO(c, (id, data).R) = c if (id ÷ B,⊥) ∈ c

Usa,FIFO(c, (id, data).R) = c(id ÷ B,⊥).cbA otherwise
(5)

Figure 3. Operational semantics of replacement policies for a set-associative cache.

in
d
e
x
 f
u
n
c
ti
o
n

program counter

2-bit
counters

31 ... 2 1 0

predict

taken /
not-taken

(a) Bimodal predictor

in
d
e
x
 f
u
n
c
ti
o
n

program counter

branch
history

2-bit
counters

31 ... 2 1 0

predict

taken /
not-taken

hash

(b) Two-level predictor

Figure 4. The modeled branch predictors.

The bimodal branch predictor easily fits in our
model, using the following definitions:

Cbimodal = (S, 1,⊥, Ibimodal , Obimodal, Ubimodal)

When instructions are 4 bytes long and are al-
ways aligned on 4-byte boundaries, then the index
function ignores the lowest 2 bits from the pro-
gram counter, as these bits are always zero:

Ibimodal((id,⊥)) = bitsel(id, 4, S)

The output function returns whether the
branch direction is predicted taken, i.e. whether
the counter is sufficiently large:

Obimodal((⊥, s).c, (id, dir)) = s ≥ 2b−1

The update policy adjusts the counters to con-
form with the last observed branch direction:

Ubimodal((⊥, s).c, (id, dir).R) = (⊥, s′).λ

where

s′ = max(s − 1, 0) if dir = not-taken
s′ = min(s + 1, 2b − 1) if dir = taken

4.2 Two-Level Branch Prediction

The direction of a conditional branch instruc-
tion depends on the direction observed for previ-
ous executions of the same branch and on the di-
rection of other branch instructions. A two-level
branch predictor uses this property to increase the
prediction accuracy. It has two tables that are ac-
cessed successively.

The first-level table is accessed using the pro-
gram counter and stores the history of directions of
the branches that map to that row. The branch di-
rections are read from the table and are combined
with the program counter to index the second-level
table, which stores saturating up/down counters
just like the bimodal branch predictor. The se-
lected counter is used to make a prediction.

To update the first-level table, the correct
branch direction is appended to the branch his-
tory, which is then truncated to the right number
of bits by discarding the oldest branch directions.
The cell in the second-level table is updated simi-
larly to the bimodal branch predictor.

We first define the first-level table. To simplify
the mathematics, we place each bit in the history
in a different column. This predictor remembers
L bits of branch history:

Clevel1 = (S1, L,⊥, Ilevel1, Olevel1, Ulevel1)

Assuming that instructions are 4 byte entities,
the first-level table is indexed by the program
counter modulo 4 (Equation 6). The output func-
tion outputs the contents of the cell, such that it
can be used in the second-level table (Equation 7).
The table with histories is updated by appending
the last branch direction to the history and for-
getting the oldest branch direction (Equation 8).

The second-level table is similar to the bimodal

6

The index function for the level-1 table:

Ilevel1((id,⊥)) = bitsel(id, 4, S1) (6)

The output function for the level-1 table:

Olevel1(λ, (id, dir)) = λ

Olevel1((id, dir).c, (id1 , dir1)) = dir.Olevel1(c, (id1, dir1))
(7)

The update function for the level-1 table:

Ulevel1(c, (id, dir).R) =c(⊥, dir).cbL (8)

The index function for the level-2 table with bitwise exclusive OR:

Ilevel2((id,⊥)) = bitsel(id, 4, S2) bitwise-XOR Olevel1(C(Ilevel1((id,⊥))), (id,⊥)) (9)

The index function for the level-2 table with concatenation:

Ilevel2((id,⊥)) = concatenate(bitsel(id, 4, 2k), Olevel1(C(Ilevel1(id)), (id,⊥))) (10)

The index function for the level-2 table using only the history:

Ilevel2((id,⊥)) = Olevel1(C(Ilevel1(id)), (id,⊥)) (11)

Figure 5. Operational semantics of the two-level branch predictor.

branch predictor, except for the index function:

Clevel2 = (S2, 1,⊥, Ilevel2, Obimodal, Ubimodal)

The index function combining the program
counter and the branch history can be almost any-
thing. Frequently, the bit-wise exclusive or of
L bits from the program counter and the L his-
tory bits is computed (Equation 9). In this case,
S2 = 2L. Alternatively, one can concatenate the L

history bits with k bits from the program counter
(Equation 10), so S2 = 2k+L. Or the hashing func-
tion can ignore the program counter and just copy
the branch history (Equation 11).

4.3 Branch Target Buffer

A branch target buffer (BTB) predicts the full
branch address of the following instruction. The
BTB is organised in rows and columns, much like
a set-associative cache. The program counter of
the branch instruction is used to select one row of
the BTB and an associative search is performed to
find a cell that is tagged with the current program
counter. If such a cell is found, then the associated
branch target address is used as prediction. When
the program counter is not found in the BTB, then
the next sequential instruction is fetched.

A A-way set-associative branch target buffer
with S sets is defined as:

Cbtb = (S,A,⊥, Ibimodal, Obtb, Ubtb)

The BTB predicts the branch target address
read from the table in the case of a hit, and the
program counter incremented by 4 in case of a miss
(Equation 12).

The BTB is only updated if the branch is taken.
When the branch is not found in the BTB, the
prediction for next program counter equals the
current program counter incremented with 4 (the
size of an instruction). For the branches that are
stored in the BTB, the LRU replacement policy is
applied, but any other policy can be used as well
(Equation 13).

5 Related Work

Young, Gloy and Smith [8] present a formal
model of branch predictors. They split a stream of
(address, branch direction) pairs into substreams
and predict each substream by a single 2-bit satu-
rating counter. They analyze several alternatives
for the divider.

Another formal approach to branch prediction
was made by Emer and Gloy [1]. They formally

7

The output function of the branch target buffer:

Obtb(λ, (id, target)) = id + 4
Obtb((sid, starget).S, (id, target)) = starget if id = sid

Obtb((sid, starget).S, (id, target)) = Obtb(S, (id, target)) otherwise

(12)

The update function of the branch target buffer:

Ubtb(S, (pc, target).R) = S if target = pc + 4
Ubtb(S, (pc, target).R) = c(pc, target).delete((pc, target), S)bA otherwise

(13)

Figure 6. Operational semantics of the branch target buffer.

model components typically used in branch pre-
dictors and specify a language to combine these
components. Finally, they use a genetic optimiza-
tion algorithm to find the best branch predictor
for a particular trace. They find several weird
branch prediction structures that may be more
cost-effective than commonly used structures.

Weikle et al. [7] develop the TSPec formal
specification language to specify memory address
traces. Furthermore, they view caches as filters
on traces, i.e., the trace of cache misses is simply
a subset of the original trace. Cache miss rates
can be computed by computing the filtered trace
of misses and then counting its length.

6 Conclusion and Future Work

This paper presents a formal model of caches
and branch predictors as they are typically used
in computer architectures. The formal model un-
ambiguously describes the behavior of these com-
ponents. Future work is to use these models to
formally predict their properties. We believe that
these formal models will aid in analyzing the be-
havior and performance of these and more com-
plex hardware components, which is relevant to
reliability, dependability and real-time execution
constraints.

7 Acknowledgements

This research is sponsored by the Flemish Insti-
tute for the Promotion of Scientific-Technological
Research in the Industry (IWT), by the Fund for
Scientific Research-Flanders (FWO), Ghent Uni-
versity and by the European Network on Excel-

lence on High-Performance Embedded Architec-
ture and Compilation (HIPEAC).

References

[1] J. Emer and N. Gloy. A language for describing
predictors and its application to automatic synthe-
sis. In Proceedings of the 24th Annual International

Symposium on Computer Architecture, pages 304–
314, 1997.

[2] H. Gao and H. Zhou. Adaptive information pro-
cessing: An effective way to improve perceptron
predictors. In 1st Journal of Instruction-Level Par-

allelism Championship Branch Prediction, page 4
pages, Dec. 2004.

[3] D. Jiménez. Piecewise linear branch prediction. In
ISCA ’05: Proceedings of the 32nd Annual Interna-

tional Symposium on Computer Architecture, pages
382–393, June 2005.

[4] G. Plotkin. A Structured Approach to Opera-
tional Semantics. Technical Report DAIMI FN-19,
Computer Science Department, Aarhus University,
1981.

[5] A. Seznec. Analysis of the O-GEometric History
Length branch predictor. In ISCA ’05: Proceedings

of the 32nd Annual International Symposium on

Computer Architecture, pages 394–405, June 2005.
[6] A. J. Smith. Bibliography and readings on CPU

cache memories and related topics. ACM Computer

Architecture News, Jan. 1986.
[7] D. A. B. Weikle, S. A. McKee, K. Skadron, and

W. A. Wulf. Caches as filters: A framework for the
analysis of caching systems. In Third Grace Hopper

Celebration of Women in Computing, Sept. 2000.
[8] C. Young, N. Gloy, and M. D. Smith. A com-

parative analysis of schemes for correlated branch
prediction. In Proceedings of the 22nd Annual In-

ternational Symposium on Computer Architecture,
pages 276–286, June 1995.

8

