
Link-Time Optimization of IA64 Binaries

Bertrand Anckaert, Frederik Vandeputte, Bruno De Bus, Bjorn De Sutter, and
Koen De Bosschere

Ghent University, Electronics and Information Systems Department
Sint-Pietersnieuwstraat 41 9000 Gent, Belgium

{banckaer, fgvdeput, bdebus, brdsutte, kdb}@elis.UGent.be

Abstract. The features of the IA64 architecture create new opportu-
nities for link-time optimization. At the same time they complicate the
design of a link-time optimizer. This paper examines how to exploit some
of the opportunities for link-time optimization and how to deal with the
complications. The prototype link-time optimizer that implements the
discussed techniques is able to reduce the code size of statically linked
programs with 19% and achieves a speedup of 5.4% on average.

1 Introduction

On the EPIC (Explicitly Parallel Instruction Computer) platform, the compiler
determines which instructions should be executed in parallel. This responsibility
corresponds to the belief that better performance can be achieved by shifting
the parallelism extraction task from hardware (as in superscalar out-of-order
processors) to the compiler: the hardware becomes less complex and the compiler
can exploit its much wider view on the code [8].

Unfortunately compilers only have a fragmented program view: most com-
pilers compile and optimize all source code files independently of each other.
Even when all source code is compiled together, the libraries are still compiled
separately, and hence not optimized for any specific program. The resulting lack
of compile-time whole-program optimization is particularly bad for address com-
putations: As the linker decides on the final program layout in memory, code
and data addresses are not known at compile time. The compiler therefore has
to generate relocatable code, which is most often far from optimal.

Optimizing linkers try to overcome these problems by adding a link-time
optimization pass in the tool chain. Optimizing linkers take compiled object files
and precompiled code libraries as input, and optimize them together to produce
smaller or faster binaries. In this paper we present our link-time optimizer for
the IA64 architecture. Our main contributions are:

– We extend the existing work on Global Offset Table optimizations by creat-
ing a second global pointer at link-time.

– We show how existing link-time liveness analysis can be adapted to deal with
the rather peculiar register files of the IA64 architecture.

– We demonstrate how the set of branch registers can be exploited more effec-
tively with whole-program optimization.



The remainder of this paper is not in-
cluded as this paper is copyrighted ma-
terial. If you wish to obtain an elec-
tronic version of this paper, please send
an email to bib@elis.UGent.be with a
request for publication P104.077.pdf.

1


