
Many Benchmarks Stress the Same Bottlenecks

Hans Vandierendonck and Koen De Bosschere

Dept. of Electronics and Information Systems

Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

E-mail: {hvdieren,kdb}@elis.UGent.be

Abstract

The performance of a microprocessor is determined by
many factors, including the memory hierarchy, clock fre-
quency, organization, etc. A different trade-off between
these factors is made in each microprocessor design. The
performance is determined on the one hand by the bot-
tlenecks of the machine (e.g., memory accesses, mispre-
dicted branches, etc.) and their associated penalties and
on the other hand by the frequency by which the bottle-
necks occur, which is largely a property of the executed
program. It is therefore important that a benchmark suite
stresses all major bottlenecks in a microprocessor. If
not, the benchmark suite gives a skewed view on perfor-
mance. A method is presented to determine the most
important bottlenecks stressed by benchmarks by analyz-
ing their execution times. This method is applied to the
SPEC CPU2000 benchmarks and it is shown that these
benchmarks stress only about 4 important bottlenecks.

1 Introduction

There are many factors that determine the perfor-
mance of a microprocessor, e.g., memory hierarchy, clock
frequency, pipeline depth, issue width, etc. It is the task
of the architect to make trade-offs between all of these
factors in order to obtain a globally optimized design.
The performance of the design is evaluated by means of
benchmark programs. However, depending on the trade-
offs made, different benchmarks will indicate a different
speed for the machine, because the chosen trade-offs may
turn out particularly favorable for one benchmark but
not for another.

This paper analyzes the measurements of the SPEC
CPU2000 benchmark suite running on 340 different ma-
chines as published by SPEC. We determine the factors
that are actually measured or stressed by the CPU2000
benchmarks. Hereto, the execution time of a benchmark
on a machine is modelled as a baseline execution time, in-

creased by the number of cycles spent in each bottleneck.
The importance of a bottleneck is determined by both
the benchmark and the machine. The benchmark deter-
mines how many times the bottleneck is exercised (e.g.,
predictability of branches) while the machine design de-
termines how large the influence is of the bottleneck on
the execution time (e.g., branch mispredict penalty).

We use principal components analysis (PCA) to deter-
mine how many and which bottlenecks of the machines
are actually stressed by the CPU2000 benchmarks. The
bottlenecks obtained with this approach are expressed as
the weighted sum of the execution times of the bench-
marks. As such, the bottlenecks obtained with PCA
are a mix of elementary bottlenecks (e.g., mispredicted
branches, cache misses), just like the benchmarks them-
selves are a mix of bottlenecks. The principal compo-
nents are “usage modes”, i.e., they describe how a bench-
mark uses a machine, i.e., how much each of the bottle-
necks of the machine is stressed. The number of usage
modes and their associated penalties are determined us-
ing PCA. Unfortunately, it is hard to interpret these us-
age modes in terms of the elementary bottlenecks.

Most bottlenecks are evidently exercised by all bench-
marks (e.g., branch mispredictions and cache misses) but
each benchmark typically exercises a different mix of bot-
tlenecks. If two benchmarks do exercise a very similar
mix of bottlenecks, then these benchmarks are redun-
dant, as the same speed-up is measured. The principal
components analysis allows us to identify groups of sim-
ilar benchmarks. It is shown that most of the SPEC
CPU2000 benchmarks reduce to 4 usage modes (i.e., all
processor bottlenecks are exercised in only 4 different
mixes). In other words, a benchmark suite with 4 bench-
marks gives almost the same information on the inves-
tigated machines as the full suite containing 26 bench-
marks.

1.1 Performance Model

Performance is measured as the execution time of a
benchmark. Let us call Tij the execution time of bench-
mark i on machine j. As we analyze the execution times
of benchmarks on systems introduced over a period of 4
years, it is evident that technological progress has a ma-
jor influence (e.g., clock frequency, memory bandwidth
and latency). We reduce this effect by studying the num-
ber of cycles it takes to run a benchmark, as this more
closely follows architectural improvements:

Cij = Tij freqj (1)

In principle, all instructions can be executed in a small
number of cycles. This is sometimes called the baseline
CPI (cycles per instruction). Some instructions require
more cycles to execute than others, e.g., when there are
branch mispredictions or cache misses [11]. For these
instructions, the baseline CPI has to be increased by
a certain amount, depending on how frequent these in-
structions are and on how many cycles it takes to handle
them. Based on these observations, we model the cycle
count as the sum of the cycle counts spent in each of the
bottlenecks:

Cij =
K∑

k=1

Aik CPIkj (2)

The term CPIkj describes the additional cycles that the
kth bottleneck introduces when it occurs in machine j
and the term Aik describes how many times the bottle-
neck occurs in benchmark i. The problem faced in this
paper is to identify the K bottlenecks and to determine
the quantities Aik.

We deduce the bottlenecks from the correlations be-
tween the cycle counts Cij . Hereto, we apply principal
components analysis [7]. Principal components analysis
(PCA) transforms the 26 performance metrics (26 cycle
counts, one per benchmark) into 26 new metrics, called
principal components. Each of these new performance
metrics corresponds to a bottleneck in Equation 2. The
principal components are not correlated to each other
and are sorted with decreasing variance. The principal
components are a linear combination of the original per-
formance metrics. Thus, machine j has a value for the
kth principal component equal to

PCkj =

26∑

i=1

aki Cij (3)

where the coefficients aki are determined by PCA. In-
terpreting the principal components as the bottlenecks
of the machines (i.e., PCkj = CPIkj) learns that Equa-
tion 3 is the inverse of Equation 2. Consequently, the

coefficients Aik can be identified: the matrix A contain-
ing the coefficients Aik is the inverse of the matrix a of
coefficients aki.

In the above argument we have to assume that K =
26. However, as most principal components only have
a small variance (i.e., they do not contain much infor-
mation), it suffices to study only those principal compo-
nents (bottlenecks) with the highest variance (impact on
performance). This way, the number of important bot-
tlenecks can be reduced to a manageable number (e.g.,
K = 4).

It is best to normalize the data before applying PCA,
i.e., the mean cycle count for each benchmark should be
zero and the standard deviation should be one. If the
data is not normalized, then PCA will attach a higher
weight to benchmarks that run longer. This is an un-
desirable effect, because it seems that SPEC did not in-
tentionally choose to make some benchmarks run longer,
but that the running times of the benchmarks is deter-
mined by the inputs that were available. Thus, PCA is
applied to the quantities

C
′

ij = (Cij − µi)/σi (4)

where µi is the average execution time of benchmark i
over all machines and σi is the standard deviation of the
execution times of benchmark i.

1.2 Related Work

Workload characterization concerns itself with mea-
suring abstract performance metrics, called workload
characteristics [5]. These abstract metrics allow an ar-
chitect to anticipate the effect of design decisions on per-
formance. There are numerous abstract metrics that one
can measure, each corresponding to one particular as-
pect of a processor [3, 12]. The CPI model is often used
to separate the effect of the memory hierarchy from the
remainder of the execution time [1, 11].

The abstract metrics typically do not change much
when the input to the program is changed. This can be
detected using principal components analysis or cluster
analysis techniques [8, 10, 9].

Several papers have analyzed the suitability of the
SPEC benchmarks for research purposes. Citron anal-
yses how often the CPU benchmarks are subsetted and
arguments that this is a bad idea [4]. He also shows that
many authors still use old benchmark suites. Weicker
also expresses his concerns about the use of old bench-
mark suites and of subsetting [14]. Mirghafori et al. [13]
show that the compiler flags have a huge impact on the
execution times, so the compilation mode should always
be reported.

Dujmovic and Dujmovic [6] develop a method for the
quantitative evaluation of benchmark suites that is sim-
ilar to the model presented in this paper. They define
metrics that measure the size, completeness and redun-
dancy of the benchmark space. In the current work,
machines are mapped in a space where the coordinates
of the machines are determined by performance metrics
(benchmark cycle counts) while Dujmovic and Dujmovic
map benchmarks in a benchmark space where the co-
ordinates are determined by execution times. Although
the concept of a space of benchmarks is a useful one,
it is questionable whether the coordinates of the bench-
marks should be determined by the execution times of
the benchmarks on a set of machines. This implies that
the characteristics of the benchmarks are determined by
the machines on which they are run. Consequently, two
benchmarks may be very similar when the benchmark
space is defined using only desktop processors, but when
workstations and servers are also used to identify the
benchmark space, then the benchmarks suddenly have
different properties.

2 Experimental Setup

We analyze the CPU2000 data published on the SPEC
website (http://www.spec.org/cpu2000/results/)
before August 2003. As we are interested in both
SPECint and SPECfp results for all machines, the
analysis is limited to those machines for which both
SPECint and SPECfp peak results have been submitted.
As SPEC publishes these results in separate files, we
have to match the SPECint and SPECfp results files
that describe the same machine. Each file describes the
tested machine and the running software in detail using a
number of lines of the type “Compiler: This Company’s
C Compiler”. Two files describe the same machine
when there is a textual match on all descriptions of the
hardware and the software.1 Results that are incomplete
because they are not in compliance with the SPEC rules
are ignored. It is also required that the measurements
are performed on the same date. Using these rules, we
find that every SPECint result file is coupled to at most
1 SPECfp result file. This method finds 340 machines,
representing 7 different architectures, for which both
SPECint and SPECfp peak performance results are
submitted (Table 1).

1Spaces and special symbols are stripped. The disk subsystem

is not compared, as it should not have an influence. It is usually

not possible to have a match on the compiler field, as SPECint

requires a C and a C++ compiler and SPECfp requires a C and

a Fortran compiler. Therefore, the compiler field is ignored and

random checks are performed manually to verify that the same

version of the C compiler is used.

Table 1. The architectures (ISA) and the gener-
ations of processors in this study.

Architecture Generation No.

Alpha AXP 21264 19

21364 3

80x86 Pentium III 32

Pentium 4 86

Pentium M 1

Xeon (Pentium III and 4) 37

Athlon 27

Opteron 6

Itanium Itanium 1

Itanium 2 5

PA-RISC 8600 3

8700 8

POWER/PowerPC PowerPC 604e 1

RS64-III, RS64-IV 13

POWER3 17

POWER4 18

MIPS R12000 4

R14000 5

SPARC UltraSPARC II/IIi 6

UltraSPARC III 10

UltraSPARC III Cu 14

SPARC64GP, SPARC64V 24

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

01/99 01/00 01/01 01/02 01/03 01/04 01/05

P
ro

ce
ss

or
 F

re
qu

en
cy

 (
M

H
z)

Time of Introduction

AXP 21264
AXP 21364

Itanium
Pentium III
Pentium 4

Xeon
Athlon

Opteron
PA-8600
PA-8700

RS64
POWER3
POWER4

R12000
R14000

SPARC64
Ultra II

Ultra III
Ultra III Cu

Figure 1. The clock frequency varying over
time. The date shown is the time when both
the tested hardware and software are available
to the public.

3 Analysis

3.1 The Data

We first analyze the trends that are present in the
SPEC performance measures. It is well known that,

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

S
P

E
C

in
t2

00
0

Processor Frequency (MHz)

AXP 21264
AXP 21364

Itanium
Pentium III
Pentium 4

Xeon
Athlon

Opteron
PA-8600
PA-8700

RS64
POWER3
POWER4

R12000
R14000

SPARC64
Ultra II

Ultra III
Ultra III Cu

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

S
P

E
C

fp
20

00

Processor Frequency (MHz)

AXP 21264
AXP 21364

Itanium
Pentium III
Pentium 4

Xeon
Athlon

Opteron
PA-8600
PA-8700

RS64
POWER3
POWER4

R12000
R14000

SPARC64
Ultra II

Ultra III
Ultra III Cu

Figure 2. Peak performance for the integer (left) and floating-point benchmarks (right) as a function of
the processor’s clock frequency.

through transistor scaling and architectural choices, the
processor clock frequency continually increases. At any
time, machines are introduced covering a large range of
different frequencies (Figure 1). These machines can be
cataloged into either the “brainiac” processors, which try
to achieve high IPC but have a limited frequency, and the
“speed demons”, which strive for high clock frequencies,
whereby they can only achieve a limited amount of IPC.
The graph shows that the Pentium III, Pentium 4, Xeon
and Athlon processors are of the speed demon type. The
frequency of the speed demons grows with about 800MHz
per year, while the growth rate is about 300–350MHz for
the brainiacs. This number excludes the Opteron which
was introduced only recently and has a clock frequency
which is somewhere in between the brainiacs and the
speed demons.

There is more to performance than the processor
frequency. The summary performance metrics called
SPECint2000 and SPECfp2000 are shown in Figure 2.
These assume that peak optimization flags are used. The
plot of SPECint2000 clearly shows the difference be-
tween “brainiacs” and “speed demons”. The brainiacs
try to achieve high IPC but have a limited frequency.
The “speed demons” strive for high clock frequencies,
whereby they can only achieve a limited amount of IPC.
The brainiacs are clustered in the higher range, while the
speed demons form the lower range. A similar trend can
be detected in the SPECfp2000 metric. However, the
points in the brainiac cluster are not so closely packed,
especially in the range of 1 to 2 GHz.

The SPECint2000 metric correlates strongly with the
clock frequency. However, one should not conclude from
this that the SPECint2000 benchmarks only measure
MHz! The processor frequency increases linearly over

time mostly because of technological progress. The same
progress drives the possibility to build bigger and more
complex processors and to improve the performance and
capacity of the memory subsystem. Hence, it is normal
that any benchmark is executed faster as technology pro-
gresses, which is indicating by an increased frequency.

3.2 Not All Benchmarks See an Equal Speed-Up

This section shows that the design decisions made for
a machine may lead to a strong improvement for some
benchmarks, but not for others. The execution speed of
benchmark i on machine j is defined as Sij = Ri/Tij

where Ri is the execution time of the benchmark on
a reference machine, a Sun Ultra5-10 300 MHz. The
SPECint2000 and SPECfp2000 metrics are the geometric
mean of the Sij values of the integer and floating-point
benchmarks.

The execution speed of a small number of machines
and benchmarks shows that the selected SPARC proces-
sors obtain a huge speed for art (Figure 3). These proces-
sors can execute galgel at a rate comparable to the other
processors while the remaining benchmarks are executed
rather slowly. Thus, when speed is measured using only
art, then these SPARC processors will appear very fast,
but when speed is measured using one of gap, crafty or
mcf, then these processors are rather slow. With a sim-
ilar reasoning, it follows that using galgel to measure
speed shows that the POWER4 is very fast, while this
machine is only moderately fast when the execution time
of crafty is the measure of speed.

 0

 2000

 4000

 6000

 8000

 10000

 12000

U
ltr

a
III

 C
u

90
0M

H
z

S
P

A
R

C
64

V
13

50
M

H
z

P
O

W
E

R
4

17
00

M
H

z

A
lp

ha
 2

13
64

11
50

M
H

z

P
en

tiu
m

 4
X

eo
n

3.
06

G
H

z

A
th

lo
n

X
P

 3
20

0

Ita
ni

um
 2

15
00

M
H

z

P
A

-R
IS

C
 8

70
0

87
5M

H
z

O
pt

er
on

 2
G

H
z

E
xe

cu
tio

n
S

pe
ed

galgel
art

gap
crafty

mcf

Figure 3. A sample of the results showing that
different machines can obtain very different
speed-ups, depending on the benchmark.

3.3 The Usage Modes

Let us now turn to the identification of the usage
modes that are present in the SPEC CPU2000 bench-
marks. Application of PCA on the 26 cycle counts de-
livers 26 principal components, each corresponding to a
bottleneck. The following table shows the percentage of
the total variance explained by each principal compo-
nent, as well as the cumulative percentage of variance
that is explained.

PC1 PC2 PC3 PC4 PC5 PC6

%Var 64.36 14.77 5.84 3.39 2.75 1.76
Cum. 64.36 79.13 84.97 88.36 91.11 92.87

Only a few principal components have a large variance.
How many PCs to include in the analysis is up to the user
of PCA. Dunteman [7] advices to analyze all principal
components that explain more information than a single
variable, i.e., the variance is higher than (100%/26). We
select 4 principal components, as PC4 explains slightly
less information than a single benchmark but it still has
a useful interpretation. Note that it is equally valid to
state that the CPU2000 benchmarks stress 3 or 5 bot-
tlenecks, but it is important to note that the 4th and
5th bottlenecks play a minor role. PC1–PC4 account
for 88.36% of the information present in the data. In
other words, the CPU2000 benchmarks exercise the ma-
chines in only 4 different ways, i.e., only 4 usage modes
are present or the elementary bottlenecks are stressed in
only 4 different mixes.

To make the interpretation of the results easier, the
first 4 principal components are rotated using the vari-
max procedure [7]. Rotation redefines the principal com-
ponents such that each principal component either does

Table 2. The Factor Loadings (aki)
Benchmark F1 F2 F3 F4

gzip 0.17 0.07 -0.33 0.20

vpr 0.35 0.00 -0.06 0.07
gcc 0.25 0.06 0.11 -0.14

mcf 0.38 0.07 0.24 -0.06
crafty 0.17 -0.01 -0.29 0.04
parser 0.16 -0.19 -0.09 -0.20

eon -0.23 0.08 -0.54 -0.11
perlbmk 0.01 -0.08 -0.43 -0.01
gap -0.01 0.67 -0.05 0.36

vortex 0.17 -0.02 -0.21 -0.04
bzip2 0.31 -0.02 -0.06 -0.00
twolf 0.34 0.03 -0.04 0.06
wupwise 0.07 0.23 -0.02 -0.15

swim -0.17 0.20 -0.01 -0.35

mgrid -0.04 0.20 -0.02 -0.29

applu -0.04 0.07 0.05 -0.42

mesa -0.01 0.04 -0.36 -0.09
galgel 0.05 -0.02 -0.03 -0.34

art 0.27 -0.07 0.06 -0.16

equake 0.04 0.35 0.07 -0.05
facerec 0.05 0.04 -0.00 -0.30

ammp 0.29 -0.00 -0.06 -0.03
lucas -0.02 0.33 0.12 -0.20

fma3d 0.05 0.30 -0.11 -0.05
sixtrack 0.05 -0.05 -0.16 -0.26

apsi 0.29 0.10 -0.05 0.02

not load on a variable (aki ≈ 0) or it loads strongly on a
variable (aki differs from zero and all non-zero aki have
approximately the same magnitude). Other values of aki

make the interpretation difficult. The resulting compo-
nents, called factors, span the same 4-dimensional space
as PC1–PC4 and together they explain the same amount
of variance. The factors are named F1 to F4. The factor
loadings aki are presented in Table 2. Note that, due to
the rotation, values in the range 0.10–0.20 are rare.

The factors F1 through F4 model the number of cy-
cles that are imposed as a penalty when bottleneck k
occurs. Figure 4 shows scatter plots where each machine
is plotted against the 4 factors (bottlenecks). Note that,
by using PCA to determine these values, the presented
numbers are the deviations of the cycle counts from the
average over all machines, because the cycle counts are
normalized (mean=0, std. dev.=1) before applying PCA
(see Equation 4).

Machines of the same generation are strongly clus-
tered in the scatter plots. Consequently, changing the
clock frequency or memory system does not fundamen-

-6

-4

-2

 0

 2

 4

 6

 8

-4 -2 0 2 4 6 8

F
2

F1

AXP 21264
AXP 21364

Itanium
Pentium III
Pentium 4

Xeon
Athlon

Opteron
PA-8600
PA-8700

RS64
POWER3
POWER4

R12000
R14000

SPARC64
Ultra II

Ultra III
Ultra III Cu

-8

-6

-4

-2

 0

 2

 4

 6

-4 -2 0 2 4 6

F
4

F3

AXP 21264
AXP 21364

Itanium
Pentium III
Pentium 4

Xeon
Athlon

Opteron
PA-8600
PA-8700

RS64
POWER3
POWER4

R12000
R14000

SPARC64
Ultra II

Ultra III
Ultra III Cu

Figure 4. Scatter plots showing each machine as a point in the four-dimensional space of bottlenecks.
The position of the point shows how sensitive the machine is to each of the bottlenecks.

tally change the behavior of the machine. If it performs
better for a particular benchmark in one configuration,
then it will remain better for that benchmark in another
configuration.

There is a clear difference between how the brainiacs
and the speed-demons achieve high performance. Braini-
acs typically have F1< 0 and F4> 0. There are a few ex-
ceptions: the Ultra-II’s have F1> 0 and the RS64’s have
F4< 0 because they do not have very powerful floating-
point hardware (see below).

Even though the analysis works on cycle counts, F1
proves to correlate well with the clock frequency of the
processor. The correlation coefficient is 0.74, so machines
with higher frequencies have larger values for F1. If F1
loads positively on the cycle count of a benchmark, then,
when increasing the clock frequency of the processor, the
benchmark will need additional cycles. Consequently,
these benchmarks resist optimizations by increasing the
frequency (e.g., deep pipelining). Reasons for this could
be the presence of many off-chip memory accesses and/or
a limited branch prediction accuracy. On the other hand,
if F1 loads negatively on a benchmark, then it is pos-
sible to speedup that benchmark by means of deeper
pipelines. The factor loadings aki (Table 2) reveal that
the benchmarks that resist increases in frequency are gzip
to parser, vortex to twolf, art, ammp and apsi, while eon
and swim profit from this. The other benchmarks are
largely indifferent to the frequency, i.e., their cycle count
is mostly determined by other factors.

The factor loadings show that factor F4 is mostly de-
termined by floating-point benchmarks with strong neg-
ative loadings. Thus, F4 determines to a large extent
how well the machine performs on floating-point bench-
marks. Machines that perform well on these benchmarks

(i.e., they have many floating-point units, exploit ILP
and have large data caches) score positively on F4. Note
that the RS64 processors of the POWER architecture
score negatively on F4: these processors are optimized
for a multi-threaded commercial workload and do not
have very extensive floating-point hardware [2].

3.4 Similar Benchmarks

Each usage mode is expressed as a linear combination
of the cycle counts of the benchmarks. A usage mode
will load strongly on a group of benchmarks when the
cycle counts of these benchmarks are correlated (i.e., if
machine j executes benchmark i faster than machine j

′

,
then it will also execute benchmark i

′

faster). The us-
age mode loads negatively on a benchmark when its cy-
cle count is negatively correlated with that of the other
benchmarks. The factor loadings show which bench-
marks are similar (Table 2). Factor loadings printed in
bold are considered to be important and other values
are considered to be noise. The threshold to distinguish
between the two is set to 0.14.

Usage mode F1 states that the benchmarks gzip, vpr,
gcc, mcf, crafty, parser, vortex, bzip2, twolf, art, ammp
and apsi have a common aspect of behavior. The bench-
marks eon and swim are a-typical examples of this be-
havior and techniques that would typically speed-up a
benchmark with the properties exercised in usage mode
F1 actually result in a slow-down for eon and swim. E.g.,
deeper pipelines could speed up the group of benchmarks
with positively loadings for F1, while it would slow down
the others.

Usage mode F2 says that the benchmarks gap, wup-
wise, swim, mgrid, equake, lucas and fma3d have a com-
mon property while parser is an a-typical example of this

property. Usage mode F3 shows that gzip, crafty, eon,
perlbmk, vortex, mesa and sixtrack are similar and that
mcf has the opposite behavior. Finally, F4 states that
parser, wupwise, swim, mgrid, applu, galgel, art, fac-
erec, lucas and sixtrack have a common property while
gzip and gap are a-typical. From the interpretation of
F4 in the previous paragraph, we know that F4 mea-
sures floating-point performance. Thus, machines with
good floating-point performance typically score worse on
gzip and gap than machines which are not optimized for
floating-point.

3.5 Reducing the Benchmark Suite

As CPU2000 contains only 4 usage modes, many of
the benchmarks are redundant. We reduce CPU2000 to
a smaller number of benchmarks that, when used instead
of the full suite, leads to a good approximation of the
overall performance metric. Note that it will not be pos-
sible to reduce the suite to 4 benchmarks, as none of the
benchmarks will coincide exactly with one of the 4 usage
modes. Thus, a few more benchmarks will be necessary.

Dunteman [7] describes a heuristic procedure to rank
the benchmarks on which PCA is applied in order of
decreasing interest. It is assumed that the benchmarks
that have the highest factor scores in the first principal
components cover the largest part of the total variance.
Benchmarks are selected one at a time. In step k, the
benchmark i that has the highest factor loading aki in
PCk is put in position k. If it has already been selected,
then the variable with the second highest factor score is
put in this position, etc.

The resulting ranking is presented in Table 3. The
table also shows in row n what percentage of the total
variance is explained by the first n benchmarks. The
table shows that apsi alone explains almost 60% of the
differences between the 340 machines. With 4 bench-
marks, already 80% of the differences are explained and
9 benchmarks explain 90%. If an error of less than 5%
is desired, then one needs 14 benchmarks, or just more
than half of the CPU2000 suite. Note that leaving out
vpr from CPU2000 has no impact on what machine is
deemed to be the fastest.

The ranking shows that, if subsetting the suite is de-
sired or necessary, then it is recommended to include
at least apsi, lucas, mcf and gap. Note that, as the
procedure is heuristic, there are other combinations of
benchmarks which together explain the same amount of
variance. In any case, the conclusion of this experiment
is that one does not need 26 benchmarks to collect the
same information that CPU2000 collects.

At the last ISCA conference, a discussion was held on
whether subsetting the SPEC benchmarks for research

purposes is good practice, or not [4]. The above results
show that subsetting SPEC seems good practice, pro-
vided that the choice of subset is motivated. Note that,
as one typically focuses on a particular part of a pro-
cessor when doing research, the required subset will be
dependent on the topic of investigation.

Table 3. A ranking of the CPU2000 benchmarks.

Bench. % Var. # Bench. % Var.

1 apsi 58.9% 14 gzip 95.4%
2 lucas 72.9% 15 perlbmk 96.3%
3 mcf 76.8% 16 applu 97.2%
4 gap 80.2% 17 galgel 97.5%
5 facerec 84.4% 18 wupwise 98.0%
6 mesa 86.4% 19 equake 99.0%
7 art 87.0% 20 mgrid 99.1%
8 eon 88.9% 21 gcc 99.4%
9 parser 91.1% 22 vortex 99.7%

10 fma3d 91.6% 23 bzip2 99.8%
11 swim 93.2% 24 sixtrack 99.9%
12 crafty 94.0% 25 ammp 100.0%
13 twolf 94.5% 26 vpr 100.0%

The notion that benchmarks measure largely the same
factors of the performance of a machine is strengthened
by measuring what percentage of the total variance is
already explained by a single benchmark (Table 4, col-
umn %Var.). Most benchmarks measure between 27.4%
and 58.9% of the variance of the whole suite. Gap is an
exception as this benchmark alone captures only 10.6%,
which implies that gap contains a small number of us-
age modes. We also measured the percentage of variance
that is unique to each benchmark, i.e., a difference be-
tween two machines that only this benchmark can detect
(column Uniq.). Every benchmark contains less than 1%
of the total variance that is not measured by the other
benchmarks. It follows that a single benchmark contains
hardly any information that is not present in the other
benchmarks. Or if it does, then it has no influence on
the performance of the investigated machines.

4 Conclusion

A benchmark suite has to stress all important bottle-
necks of a microprocessor (i.e., conditions or situations
that hamper performance). Each benchmark typically
stresses multiple bottlenecks at once but stresses some
more than others. Ideally, each benchmark in a bench-
mark suite should stress a different mix of bottlenecks.
We call such a mix of bottlenecks a usage mode. Bench-

Table 4. Percentage of variance explained by the benchmarks.

Bench. %Var. Uniq. Bench. %Var. Uniq. Bench. %Var. Uniq. Bench. %Var. Uniq.

gzip 35.1% 0.25% vpr 54.3% 0.02% gcc 51.3% 0.21% mcf 45.3% 0.16%
crafty 49.0% 0.07% parser 39.8% 0.83% eon 28.5% 0.38% perlbmk 33.0% 0.28%
gap 10.6% 0.43% vortex 48.8% 0.22% bzip2 56.5% 0.02% twolf 53.4% 0.11%
wupwise 51.2% 0.12% swim 29.2% 0.24% mgrid 46.0% 0.12% applu 44.7% 0.14%
mesa 45.4% 0.29% galgel 51.5% 0.23% art 52.7% 0.14% equake 27.4% 0.72%
facerec 47.8% 0.18% ammp 57.9% 0.05% lucas 31.1% 0.35% fma3d 46.7% 0.19%
sixtrack 53.6% 0.10% apsi 58.9% 0.06%

marks that stress the same usage modes are mutually
redundant.

Principal components analysis, a statistical data anal-
ysis technique, is applied to derive the most important
usage modes from the cycle counts of the SPEC CPU2000
benchmarks. It is shown that the 26 CPU2000 bench-
marks use a machine in only 4 different ways. Con-
sequently the number of benchmarks can be reduced
without loosing much information. When using fourteen
benchmarks only 5% of the information in the bench-
mark suite is lost. Using 9 carefully selected benchmarks
throws away 10% of the information that can be captured
with the full suite.

Acknowledgements

Hans Vandierendonck is sponsored by the Flemish In-
stitute for the Promotion of Scientific-Technological Re-
search in the Industry (IWT). Many thanks to Bjorn De
Sutter for proof-reading the paper. The authors are in-
debted to SPEC (http://www.spec.org/) for publish-
ing the vendor’s measurements and to the vendors for
making the measurements. All interpretation of the data
is that of the authors.

References

[1] A. Borg, R. E. Kessler, G. Lazana, and D. W. Wall.
Long address traces from RISC machines: Generation
and analysis. Technical report, Western Research Lab-
oratory, Sept. 1989.

[2] J. Borkenhagen, R. J. Eickemeyer, R. Kalla, and
S. Kunkel. A multi-threaded PowerPC processor for
commercial servers. IBM Journal of Research and De-

velopment, 44(6):885–898, Nov. 2000.

[3] P. Bose and T. M. Conte. Performance analysis and its
impact on design. IEEE Computer, 31(5):41–49, May
1998.

[4] D. Citron. The use and abuse of SPEC: An ISCA panel.
IEEE Micro, 23(4):73–77, July 2003.

[5] T. M. Conte and W.-m. W. Hwu. Benchmark charac-
terization. IEEE Computer, 24(1):48–56, Jan. 1991.

[6] J. J. Dujmovic and I. Dujmovic. Evolution and evalu-
ation of SPEC benchmarks. ACM SIGMETRICS Per-

formance Evaluation Review, 26(3):2–9, Dec. 1998.
[7] G. H. Dunteman. Principal Components Analysis.

SAGE Publications, 1989.
[8] L. Eeckhout, H. Vandierendonck, and K. De Boss-

chere. How input data sets change program behaviour.
In Workshop on Computer-Architecture Evaluation Us-

ing Commercial Workloads, held in conjunction with

HPCA-8, Feb. 2002.
[9] L. Eeckhout, H. Vandierendonck, and K. De Boss-

chere. Designing computer architecture research work-
loads. IEEE Computer, 36(2):65–71, Feb. 2003.

[10] L. Eeckhout, H. Vandierendonck, and K. De Bosschere.
Quantifying the impact of input data sets on program
behavior and its applications. Journal of Instruction-

Level Parallelism, 5:1–33, 2 2003.
[11] P. G. Emma. Understanding some simple processor-

performance limits. IBM Journal of Research and De-

velopment, 41(3):215–231, May 1997.
[12] L. K. John, P. Vasudevan, and J. Sabarinathan. Work-

load characterization: Motivation, goals and method-
ology. In Workload Characterization: Methodoloy and

Case Studies. IEEE Computer Society, 1999.
[13] N. Mirghafori, M. Jacoby, and D. Patterson. Truth in

SPEC benchmarks. ACM Computer Architecture News,
23(5):34–42, Dec. 1995.

[14] R. Weicker. On the use of SPEC benchmarks in
computer architecture research. Computer Architecture

News, 25(1):19–22, 1997.

