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Abstract— In many computer systems, a large portion of
the execution time and energy consumption is due to mem-
ory accesses. The access time and power consumption of a
single access increases with increasing memory size. There-
fore, most memory accesses should be made to a small mem-
ory. Luckily, most programs exhibit locality, i.e. only a small
subset of all variables (=the working set) is accessed fre-
quently. By keeping the working set of the program in a
small memory, the memory bottleneck is diminished.

Traditionally, caches are used which track the working set
of a program in hardware. In contrast, we present a compiler
method which computes the working set of the program.
Based on the analysis, a set of different small memories is
constructed tailored to the application. Furthermore, the
program is augmented so that it explicitly moves the cur-
rent working set in the small memories. In comparison to
caches, no hardware is needed to keep track of the work-
ing set, which makes memory accesses more energy efficient
and requires less chip area. After applying this method, ex-
ecution time was reduced by 17% and energy consumption
was reduced by 39% in comparison to the best cache-based
solution.

Keywords— compiler optimization, embedded systems,
cache, scratch pad memory

I. Introduction

MANY programs use a large amount of data, requiring
large memories to store it, which degrades efficiency

since large memories have long access times and consume a
large amount of energy. However, almost all programs ex-
hibit locality, i.e. only small subset of all data is frequently
used during a given time frame t of program execution.
This small subset is called the working set of time frame
t. By keeping the working set in a small memory, most
memory accesses are handled by that small memory, which
makes them faster and more energy-efficient.

In most systems, caches are used to make sure that the
data in the working set is kept in a small and efficient mem-
ory. A cache (see fig. 1(a)) is placed between the CPU and
the main memory. It consists of a small memory structure
to remember the most frequently used data. Furthermore,
it contains a hardware tag structure, which records its con-
tents and how frequently data is used. This information al-
lows to retain the most frequently used data in the cache.
In embedded systems, caches have a number of drawbacks.
First, it is unpredictable whether a memory access will be
serviced by the cache or by main memory, leading to unpre-
dictable execution time, which is bad in real-time systems.
Furthermore, the tag structure makes the cache larger (in
chip area), more energy consuming, and slower in compar-
ison to an SRAM memory of the same size. Therefore, in
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Fig. 1. Difference between a cache-based and an SPM-based system.
The number on the arrows show typical relative values of energy
consumption cost of a access to a given memory.

for i = 0 to 4
for j = 0 to 4
B(j,i) = A(i,j) + A(i+1,j) +

A(i,j+1) + A(i+1,j+1)
endfor

endfor

(a) example code

(b) j-working set (c) i-working set

Fig. 2. Example of a code with different stencils. (a) shows the
source code, (b) and (c) show the working set in array A of a single
iteration of the i- and j-loop, i.e. the data elements accessed by
those iterations. Since the j-loop is nested in the i-loop, the
working set of the j-loop is a subset of the working set of the
i-loop.

embedded systems, instead of cache, scratch pad memories
(SPM) are often used, which are small SRAM memories
which are addressed directly by the software (see fig. 1(b)).
The difficulty in using SPMs is that the software must con-
trol the contents of the SPM by explicitly moving data be-
tween SPM and main memory. Here, we propose a program
analysis which calculates the working sets of the program
at any time during execution. Based on this analysis, it
is calculated which size the SPM should be. Furthermore,
code is inserted in the application which moves data be-
tween SPM and main memory when it enters/leaves the
programs working set.

II. Program Analysis

Here, for reasons of clarity and simplicity, the program
analysis is explained by example. A more general and for-
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Fig. 3. Copy candidate graph for array A in the loop in fig. 2

mal description of the analysis is described in [1]. Consider
the code in figure 2(a). For every loop, it is computed which
array elements are accessed at a given iteration. The re-
sults of this analysis is shown in figure 2(b) for the j-loop
and in fig. 2(c) for the i-loop. The arrows in the figure show
how the working set moves through the array in consecu-
tive iterations of the loop. In order to store the elements
of the working set of an iteration of the j-loop, a SPM of
size 4 is needed. Similarly, for capturing the working set of
the i-loop an SPM of size 12 is needed.

Depending on the number of accesses and the size of
the required SPMs, it might not be profitable to use a
different SPM for each calculated working set. In fact, each
working set is just only a candidate for being copied into
a fast SPM memory, hence in this context, they are called
copy candidates. Since the profitability of assigning a copy
candidate (CC) to a SPM is dependent on the size and the
number of accesses to a CC, these are computed for all
possible CCs and represented in a graph (see fig. 3). Since
nested loops form hierarchies, also their working sets and
CCs form hierarchies. This is visible in the graph in fig. 3.
Consider the copy candidate for loop i, of size 4 (CC1).
In the graph, this CC is hierarchical higher than the CC2
for loop j (size 12), which allows it to fetch all its elements
from CC2. Therefore if CC1 is allocated to an SPM of size
4, the CPU will perform 100 requests to that SPM, and
60 memory requests will be needed to lower levels of the
hierarchy to copy data into that SPM. However, if CC1 is
not allocated to an SPM, all 100 accesses made by the CPU
would access the larger and less efficient SPM containing
CC2.

Based on the copy candidate graph, it can be decided
which CCs should be allocate to which SPM in order to
obtain highest efficiency[2]. After it is decided what the
best SPM configuration is; the source code is augmented
with necessary code which copies data between SPMs and
the main memory, in order to keep the working set in the
SPMs.

III. Evaluation

The above method has been implemented in a compiler.
In order to evaluate the method, the compiler has processed
and optimized three typical loop kernels: a matrix multi-
plication, the SUSAN kernel which performs edge detection
and noise filtering in images, and motion estimation which
is the most compute-intensive part of video compression.
The optimized codes were simulated using Trimaran, and
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Fig. 4. Results of measuring energy consumption (horizontal) and
execution time (vertical) for three programs. The triangle shows
the energy consumption and exeution time of the SPM-based
solution, while the diamonds show the results for a large amount
of different cache configurations.

their energy consumption were computed using the CACTI
model. The compiler-generated SPM-based program was
compared to solutions using a wide range of caches of differ-
ent size and associativity. The results are shown in fig. 4.
As can be seen, the SPM-based solution is always more
energy-efficient, and often faster than the best cache-based
solutions.

IV. Conclusions

Moving the responsibility for keeping working sets in
small memories from the cache hardware to the compiler
software simplifies the hardware and leads to more efficient
memory accesses. On our experiments, execution time was
reduced by 17% and energy consumption was reduced by
39% in comparison to the best cache-based solution. More
details canbe found in[1].
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