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Abstract— Workload characterization is concerned with

the characterization of workloads in terms of abstract met-

rics, called workload characteristics. Many workload char-

acteristics have to be measured in order to accurately model

workload behavior. Furthermore, these characteristics are

typically strongly correlated. It is therefore useful to use

statistical data analysis techniques when comparing the

workload characteristics between different programs and

their inputs. One such technique, principal components

analysis, is applied to several important problems in work-

load characterization.
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I. Introduction

COMPUTER architectures are evaluated by running a
workload on the computer and measuring its execu-

tion time. New computers are designed in the same way.
However, as the computer does not exist yet, it is not
possible to execute the workload. This is where workload
characterization enters the picture. The goal of workload
characterization is to describe the properties of a workload
(its behavior) in terms of abstract performance metrics,
called workload characteristics, that predict the final per-
formance [1].

There are, however, many aspects to the behavior of a
workload and each of these aspects must be adequately
characterized. These aspects include the data and instruc-
tion memory access patterns, the predictability of branch
instructions, the amount of instruction level parallelism,
the types of ALU operations, etc. To complicate matters,
the workload characteristics are strongly correlated.

For this reason, we use statistical data analysis tech-
niques to (i) reduce the number of workload characteristics
and (ii) remove the correlations. This paper uses principal
components analysis [2], although there exist many other
techniques that are equally applicable. Three applications
of principal components analysis to workload characteriza-
tion are discussed. But first, principal components analysis
is explained.

II. Principal Components Analysis

Principal Components Analysis (PCA) is a statistical
data analysis technique [2]. It transforms a set of p vari-
ables Xi (the workload characteristics) into a set of p new
variables Zj , in such a way that (i) the Zj ’s are sorted
with decreasing variance and (ii) the Zj ’s are not corre-
lated. The Zj ’s are linear combinations of the Xi and they
are called the principal components (PC).
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It is possible to reduce the number of characteristics by
retaining only the first q � p of the principal components
and neglecting the others. When a proper choice of q is
made, then the q variables still contain most of the infor-
mation of the complete data set. A disadvantage of this
method is that it may be very difficult to interpret the
principal components, which is necessary to understand the
differences in the behavior of programs.

III. Running Example

This section describes the analysis of the data mem-
ory behavior of the SPEC CPU95 and CPU2000 bench-
mark suites. This analysis is used during the remainder of
this paper to illustrate the possible applications of PCA to
workload characterization.

The data memory behavior is characterized by means of
the data cache miss rate measured for various cache config-
urations. This data is cleaned by transforming it into ratios
of miss rates, such that each of the 42 workload character-
istics measures the impact of changing one specific cache
parameter. The cache parameters varied in this study are
the cache size, cache block size, associativity and the set
index function. By varying the set index function between
the baseline modulo indexing and a better XOR-based hash
function, it is possible to measure whether a benchmark
generates very regular and repetitive conflict misses, which
can be typically removed using software techniques (e.g.,
code restructuring and data layout optimizations).

The result of applying PCA to the 42 workload char-
acteristics is shown in Figure 1. Only the 3rd and 4th
principal components are shown due to space limitations.
The interpretation of these principal components is such
that benchmarks with many repetitive conflict misses are
located to the left of the graph, benchmarks that require
high associativity when the block size is large are located
near the top and benchmarks that require high associativ-
ity when the block size is small are located near the bottom
of the plot.

IV. Applications

There are many problems in workload characterization
and performance evaluation in general to which PCA can
be usefully applied. Besides the topics discussed below,
data analysis techniques have been applied to, e.g., select-
ing short traces of a benchmark that have the same be-
havior as the full benchmark [3] and reducing the size of a
benchmark suite by pruning similar benchmarks [4].
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Fig. 1. Scatter plot of the 3rd and 4th principal components. Each
point shows the values of PC3 and PC4 for a program and its
input. The “FP” and “INT” labels signify sub-suites of CPU95
and CPU2000.

A. The Effect of Inputs on Program Behavior

The behavior of some programs is strongly effected by
its input. E.g., when compiling a C program, the code
constructs used in the program determine which code frag-
ments in the compiler are activated. As such, the input
effects the behavior of the compiler [5].

From the scatter plot (Figure 1), one can easily see how
the input effects the behavior of the program. When the
program-input pairs for the same program are clustered
together, then the input has a minor effect on the program
behavior. E.g., the inputs to swim, wave5 and tomcatv

in the left half plane, su2cor at the top right and applu

near (-1,1) are clustered, so the inputs have little influence
on program behavior. In contrast, the train and reference
inputs for equake radically change its behavior.

Applications include: selecting inputs for profile-guided
compiler optimizations and composing a workload for sim-
ulation purposes [5], [6] as well as validating shortened in-
puts (i.e., inputs that have been trimmed in order to limit
execution times) [7].

B. Comparing Workloads

The Standard Performance Evaluation Corporation

(SPEC) constructs benchmark suites with the goal of mak-
ing objective performance comparisons. The CPU bench-
mark suites measure the combined performance of the pro-
cessor, the memory hierarchy and the compiler. As com-
puters become larger and more powerful, so do the pro-
grams we wish to run on them. Therefore, SPEC renews
the CPU suite every 3 to 4 years.

The behavioral differences between successive versions of
the CPU suite can be judged from the scatter plot. The
most obvious change in behavior is the importance of repet-
itive conflict misses: CPU95 has several benchmarks which
are very prone to this type of misses, while this program
property is almost absent in CPU2000. It can be observed
that the left half of the scatter plot contains only CPU95
benchmarks, except for equake.train (Figure 1). This area
is marked by the dashed line.

C. Eccentric Benchmarks

The example also illustrates that some benchmarks have
a notably different behavior as the majority of the bench-
marks. Such benchmarks are called eccentric benchmarks.
They are excellent candidates for a case study, as they
stress some behavioral property to a large extent. Such
benchmarks are also good candidates to include in a bench-
mark suite, as they cover behavioral types that are not
present in other benchmarks.

Eccentric benchmarks can also be erratic, i.e., they have
a different behavior but this behavior can be fixed by rel-
atively simple optimizations of the source code. Erratic
benchmarks are not useful, as they measure the perfor-
mance of a system on a badly coded program. If one wants
high performance, then one must invest an effort too and
optimize the program for the machine at hand.

The swim benchmark in CPU95 shows that erratic
benchmarks do occur in practice. The CPU95 version of
swim is located at the left of the scatter plot and is ec-
centric: there are few benchmarks that are so sensitive to
repetitive conflict misses. On the other hand, the CPU2000
version of swim is near (0,0), which means it is an average
benchmark. Thus, the behavior of CPU95’s swim can be
fixed, meaning that it is an erratic benchmark. Wave5 and
tomcatv are also erratic benchmarks.

V. Conclusion

Workload characterization is concerned with the char-
acterization of workload performance in terms of abstract
metrics. The application of principal components analy-
sis to workload characterization problems is discussed. It
is applied to gauge the effect of an input on program be-
havior, to detect behavioral differences between benchmark
suites and to detect eccentric benchmarks.
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