
Visualization Enables the Programmer to Reduce Cache Misses
Kristof Beyls and Erik H. D’Hollander and Yijun Yu

Electronics and Information Systems
Ghent University

Sint-Pietersnieuwstraat 41, Gent, Belgium
email:{kristof.beyls,erik.dhollander,yijun.yu}@elis.rug.ac.be

Abstract

Many programs execution speed suffer from cache misses.
These can be reduced on three different levels: the hard-
ware level, the compiler level and the algorithm level.
Much work has been done on the hardware level and the
compiler level, however relatively little work has been done
on assisting the programmer to increase the locality in his
programs. In this paper, a method is proposed to visual-
ize the locality which is not exploited by the cache hard-
ware, based on the reuse distance metric. Visualizing the
reuse distances allows the programmer to see the cache
bottlenecks in its program at a single glance, which al-
lows him to think about alternative ways to perform the
same computation with increased cache efficiency. Fur-
thermore, since the reuse distance is independent of cache
size and associativity, the programmer will focus on op-
timizations which increase cache effectiveness for a wide
range of caches. As a case study, the cache behavior of
the MCF program, which has the worst cache behavior in
the SPEC2000 benchmarks, is visualized. A simple op-
timization, based on the visualization, leads to consistent
speedups from 24% to 48% on different processors and
cache architectures, such as PentiumII, Itanium and Alpha.
KEY WORDS
Data cache, program visualization, reuse distance, program
optimization, software tools

1 Introduction

The execution time of many programs is dominated by
cache stall time on current processors. In the future, this
is going to aggravate due to the increasing gap between
processor and memory speed. The processor speed is in-
creasing by 60% per year, while the memory speed only
increases at about 7% per year[6]. This leads to a memory
wall which doubles every two years. Currently, a processor
can typically execute a thousand instructions while fetch-
ing data from main memory.

Therefore, in order to keep the processor from being
data-starved, it must be assured that the data locality in the
program is exploited maximally by the data cache hierar-
chy. The two most occurring types of misses are the con-
flict and the capacity misses. The conflict misses are those
misses that occur because the associativity of the cache is

too small. The capacity misses are those that exist because
the size of the cache is too small.

The optimization of the cache hierarchy utilization
can be performed at three different levels:

• At the hardware level, the cache hardware could be
improved. Most of the proposed techniques in the lit-
erature focus on reducing conflict misses by cheaply
increasing the effective associativity of the cache. In
order to decrease the capacity misses, the size of the
cache should be increased. However, increasing the
cache size makes it slower. Therefore, a tradeoff must
be made between cache size and its response time.
Currently, processors have a number of different cache
levels, where the first cache level is small and fast and
the levels below are increasingly larger and slower.

• Since the capacity misses are hard to resolve at the
hardware level, they should be focused at thecom-
piler level. At the compiler level, the conflict misses
are diminished by improving the data layout, and ca-
pacity misses are handled by increasing the locality
of capacity misses. However, previous research[1]
has shown that state-of-the-art compiler technology
removes 30% of the conflict misses and only 1% of the
capacity misses in numerical programs such as those
in SPEC95fp.

• A lot of cache misses exist, even after the hardware
level has been optimized and the compiler has taken
great effort to reduce them. The final optimization
level is thealgorithm level, which is controlled by the
programmer.

In contrast to the extensive literature on cache hard-
ware optimization and compiler optimizations for cache be-
havior, relatively little work has been performed on helping
the programmer to optimize its programs cache behavior.
Therefore, in this paper, we focus on supporting the pro-
grammer in his effort to reduce cache miss bottlenecks.

Several studies on different benchmark suites have
shown thatcapacity missesare the most dominant cate-
gory of misses[9, 1, 3]. However, as discussed above, at the
hardware level and the compiler level, mostly theconflict
missesare targeted. At the hardware level, capacity misses
can only be reduced by making the cache larger, and gener-
ally, slower. At the compiler level, capacity misses can be

reduced, but only for regular array-based loops. Little com-
piler work has been proposed to eliminate capacity misses
for pointer-based irregular programs.

Because it is hard or impossible for the compiler to
analyze or optimize a programs cache behavior, the job is
delegated to the programmer. Of course, in order to be ef-
fective, the following objectives should be reached:

1. The cache behavior is not obvious from the source
code. Therefore, a tool should show the programmer
where the real cache bottleneck in the program lays.
The visualization of the cache behavior by the tool
should be program-centric[14], so that the program-
mer can relate the cache misses to program constructs.
Also, if possible, the tool should give hints to the pro-
grammer about how to resolve the bottlenecks.

2. In the ideal case, the optimization should not be spe-
cific to a single platform, but it should result in im-
proved execution speed, irrespective of the precise
cache structures or processor micro-architecture the
program runs on.

In order to reach the first goal, a tool should be de-
vised which visualizes the cache behavior of the program.
However, the amount of information about the cache be-
havior that can be recorded is huge. For example, each
access to the memory could be recorded as a cache hit or
a cache miss. However, since a program typically accesses
the memory hundreds of millions of times per second, it
is unfeasible to throw all this information unfiltered to the
programmer. Instead, the cache behavior should be mea-
sured by a metric which allows to describe the cache bottle-
necks accurately in a concise way. Ideally, the programmer
should be able to identify the cache bottlenecks at a single
glance.

Furthermore, in order to reach the second goal, the
metric which is used to visualize the cache behavior must
indicate the cache behavior bottlenecks, independent from
the precise cache structure implemented in the hardware.
For example, it should be displayed irrespective of the pre-
cise associativity of the cache or its exact size. These prop-
erties are found in the reuse distance, which indicates cache
behavior, independent from cache parameters such as asso-
ciativity or size.

The reuse distance metric is further discussed in sec-
tion 2. The measurement and the visualization of the cache
behavior, based on the reuse distance metric is presented
in section 3. As a case study, the cache behavior of MCF,
the program with the highest cache miss bottleneck in the
SPEC2000 benchmark is shown in section 4. Based on the
visualization, a small number of program transformations
are proposed, which lead to a speedup of up to 48%, on Ita-
nium, PentiumII and Alpha-processors. A comparison to
related work is made in section 5, and a conclusion follows
in section 6.

A X Z Y W A A
2 31

r r r

Figure 1. A memory access stream with indication of the
reuses.A,W,X, Y andZ indicate the accessed memory
location. The accesses toX,Z, Y andW are not part of a
reuse pair, sinceW,X, Y andZ are accessed only once in
the stream. The reuse distance of〈r1, r2〉 = 4. The reuse
distance of〈r2, r3〉 = 0. The backward reuse distance of
r1 =∞, the backward reuse distance ofr2 = 4.

2 Reuse Distance

Since the capacity misses are the dominant source of
misses, and the hardware and compiler cannot reduce them
very effectively, the programmer should focus on resolving
those misses. The number of conflict misses is very depen-
dent on both cache details, such as cache associativity, line
size and cache size, and on compiler details such as how
the data is layed out in the memory. Furthermore, the con-
flict misses can be reduced substantially by the hardware
and the compiler level. Therefore, we wish to only present
the potential capacity misses to the programmer.

The capacity misses can be represented by the reuse
distance, irrespective of the actual cache size. The reuse
distance is defined within the framework of the following
definitions.

Definition 1. A referenceis a read or a write in the source
code, while amemory accessis one particular execution
of that read or write.

A reuse pair 〈r1, r2〉 is a pair of memory accesses in
a memory access stream, which touch the same memory lo-
cation, without intermediate accesses to that location. The
reuse distanceof a reuse pair〈r1, r2〉 is the number of
unique memory locations accessed between referencesr1

andr2.

Definition 2. Consider the reuse pair〈r1, r2〉. Theback-
ward reuse distanceof r2 is the reuse distance of〈r1, r2〉.
If there is no such pair, the backward reuse distance ofr2

is∞.

Example 1. Figure 1 shows two reuse pairs in a short
memory access stream.

The reuse distance has the following property, which
makes it an interesting metric for detecting capacity misses:

Lemma 1. In a fully associative LRU cache withn lines,
an access with backward reuse distanced < n will hit. An
access with backward reuse distanced ≥ n will miss.

Proof. In a fully-associative LRU cache withn cache lines,
then most recently referenced memory lines are retained.
When a reference has a backward reuse distanced, exactly
d different memory lines were referenced previously. If

combine filtered data
and present it to the programmer

to filter out the
relevant data from
the simulation

by executing
instrumented binary

by compiler

Filtering

Visualization

Simulation

Instrumentation

Optimization

1

2

3

4

5

6

the programmer thinks about ways
to optimize it’s program, based on
information provided by the
visualization

Figure 2. Overview of the measurement, visualization and
optimization cycle for cache optimization.

d ≥ n, the referenced memory line is not one of then
most recently referenced lines, and consequently will not
be found in the cache.

Since all the cache misses in a fully associative cache
are capacity misses, the backward reuse distance indicates
what cache size is needed for a particular memory access
to be a cache hit instead of a capacity miss. Furthermore,
[1] showed that the reuse distance is also a good predic-
tor of cache behavior for less associative caches, and even
for direct mapped caches. Therefore, the reuse distance
is a simple metric which, irrespective of cache parameters
such as associativity or size, indicates the cache behavior
of memory accesses.

3 Reuse pair visualization

The different steps in the visualization and optimization
process are shown in figure 2. First, the program that needs
to be optimized is instrumented to measure the reuse dis-
tances during the execution. In the second step, the instru-
mented program is executed and the reuse distance is mea-
sured. In the third step, the reuse distance information from
the simulation is filtered, so that only those reuses leading
to capacity misses are retained. In the fourth step, these
long reuses are shown to the programmer, who can then
start to think about ways to reduce the distance between
use and reuse, in order to transform the capacity misses into
cache hits. After optimizing his program, the programmer
can measure it again, and try to resolve any left-over cache
bottlenecks. The different steps are discussed in detail be-
low.

Instrumentation

First, the memory access stream generated by the program
is needed, so that the reuse pairs can be extracted from
it. Furthermore, for every memory access, it is neces-
sary to know which reference generated it, so that it can
be tracked back to the source code. In our implementa-
tion, we extended the ORC-compiler[5], so that for every
instruction accessing the memory, such as loads, stores and
prefetches, a function call is inserted. The memory address
accessed and the identification of the instruction generating
the memory access are given to the function as parameters.

This instrumentation makes sure that the function is
called for every memory access, and the necessary informa-
tion about the memory location and the reference is given.

Simulation

The instrumented program is linked with a library which
implements the function which is called on every memory
access. This function could just store the memory trace
to disk. However, this would lead to an enormous trace
file on disk, since typical programs access the memory bil-
lions of times. Therefore, the trace is processed online.
The backward reuse distance is calculated for the access,
and the previous reference accessing the same location is
looked up. For every pair of references in the program it
is recorded how many reuse pairs with which reuse dis-
tance were measured during the execution of the program.
Only this histogram of reuse distances per pair of refer-
ences retained, which reduces the amount of data needed to
be stored on disk. In our implementation, the data is stored
in an XML-format. A short example of the XML-data is
shown in fig. 3.

Filtering & Visualization

Lemma 1 indicates that only those reuses which are larger
than the cache size generate capacity misses. Therefore,
the reuse pairs with a short reuse distance are eliminated,
so that only the long reuses are leftover. It is exactly those
long reuses which generate cache misses. The filtering
will filter out those reuse distances which do not fit into
the cache size. This is easily implemented with an XSLT-
filter[13] which transforms the raw XML-data measured in
the simulation step. The result of the filter on the example
data in fig. 3 is shown in fig. 4.

After this, exactly the interesting information for the
programmer has been extracted from the program. In or-
der to increase the efficiency of the programmer, the data
should be shown directly in the source code. In this way,
the programmer can easily analyze the long reuse distances
and the program constructs which lead to those long reuse
distances. The long reuse distances are shown graphically
by arrows between source and sink in the source code.
In our prototype implementation, the VCG-graph layout

Figure 5. Visualization of long-distance reuses in MCF, as produced by VCG. The visualization is a zoom of the locations
where the majority of the long reuse distances occur. For 48.09% of all long distance reuse pairs, the first access is generated
by arc->ident on line 190 and the second access is generated byarc->ident on line 186. Furthermore, For 22.12% of
the long distance reuse pairs, the first and second accesses are both generated byarc->ident on line 186. So, 70.21% of all
capacity misses occur on the access of theident field of the variable pointed to byarc on line 186.

<reference id="pbeampp.c/primal_bea_mpp:21">
<reuse>

<log2distance>16</log2distance>
<fromid>pbeampp.c/primal_bea_mpp:21</fromid>
<count>3310601</count>

</reuse>
<reuse>

<log2distance>17</log2distance>
<fromid>pbeampp.c/primal_bea_mpp:21</fromid>
<count>109607</count>

</reuse>
<reuse>

<log2distance>18</log2distance>
<fromid>pbeampp.c/primal_bea_mpp:21</fromid>
<count>513041</count>

</reuse>
<reuse>

<log2distance>19</log2distance>
<fromid>pbeampp.c/primal_bea_mpp:21</fromid>
<count>13477191</count>

</reuse>
<reuse>

<log2distance>20</log2distance>
<fromid>pbeampp.c/primal_bea_mpp:21</fromid>
<count>7218189</count>

</reuse>
</reference>

Figure 3. Example of some reuse distance data, recorded
for the MCF program, before filtering. Only those reuses
for which both the first and second access are generated by
the 21st memory instruction in thepbeampp.c source file
are shown here. Thelog2distance field shows thelog2

of the measured reuse distance, thecount field shows the
number of times the reuse felt into this category.

<reference id="pbeampp.c/primal_bea_mpp:21">
<reuse>

<log2distance>15</log2distance>
<fromid>pbeampp.c/primal_bea_mpp:21</fromid>
<count>24628629</count>

</reuse>
</reference>

Figure 4. The same reuse distance data as in figure 3, after
filtering with reuse distance≤ 15 has been applied. This
data leads to the edge with the 22.12%-label in the visual-
ization in fig. 5

tool[7] was used to draw the long reuse distance arrows.
An example of the resulting graph is shown in fig. 5.

Program Optimization

The previous steps were all automatically performed by the
computer. Now, based on the measured reuse distances,
it must be tried to reduce the distance between use and
reuse for long reuse distances, which decreases the num-
ber of capacity misses. In the introduction, it has been ar-
gued that the compiler or the hardware cannot do this effec-
tively. Therefore, programmer interaction is needed, since
he knows how his program works, and how he can restruc-
ture the program in order to reduce long reuse distances.
An example of an optimization is shown in the case study,
in the next section.

for(; arc < stop_arcs; arc += nr_group)
{

/* prefetch arc!!*/
#define PREFETCH_DISTANCE 8

PREFETCH(arc+nr_group*PREFETCH_DISTANCE);
if(arc->ident > BASIC)
{

red_cost = bea_compute_red_cost(arc);
if(bea_is_dual_infeasible(arc, red_cost))
{

basket_size++;
perm[basket_size]->a = arc;
perm[basket_size]->cost = red_cost;
perm[basket_size]->abs_cost =

ABS(red_cost);
}

}
}

Figure 6. The optimized code for the MCF program. A
single prefetch instruction was inserted.

4 Case Study

Here, the long reuse distances for the MCF program are
shown and the program is optimized. MCF is the pro-
gram from the SPEC2000 benchmark which has the highest
cache bottleneck. On an Itanium processor, even after full
compiler optimization, this processor is stalled waiting for
data to return from the memory about 90% of the execution
time.

In fig. 5, the majority of the cache misses are shown
in the code. The figure shows that about 70% of the capac-
ity misses are generated by a single load instruction on line
186. The best way to solve those capacity misses would be
to shorten the distance between use and reuse. However,
after analyzing the code a bit further, it is obvious that the
reuse of arc-objects do not occur within a single iteration of
the for -loop on line 184. Additionally, the reuse doesn’t
even occur between iterations of the outermost loop which
goes from line 181 to line 206. The reuse occurs between
different invocations of this function. So, bringing use and
reuse together would need a thorough understanding of the
complete program, which we do not have, since we didn’t
write the program ourselves. Therefore, instead of remov-
ing the capacity misses, we tried to hide them using data
prefetching. We decided to try to prefetch the data that is
touched by thearc -pointer on line 186. The optimized
code is shown in figure 6.

The optimized code was compiled on 3 different pro-
cessor architectures: PentiumII, Itanium and Alpha21264.
For the PentiumII and the Itanium, the Intel compiler was
used, for the Alpha the Alpha compiler was used. For all
the experiments, the highest level of compiler optimization
was chosen. The execution times and speedups of the orig-
inal and optimized codes are shown in table 2. The table
shows that the insertion of two lines into the source code
was able to speed up the program between 24% and 48%
on CISC(PentiumII), RISC(Alpha) and EPIC(Itanium) pro-

processor L1 L2 L3
(size,assoc) (size,assoc) (size,assoc)

PentiumII (16KB, 4) (256KB, 4) not present
Itanium (16KB, 4) (96KB, 6) (2MB, 4)
Alpha 21264 (64KB,2) (8MB, 1) not present

Table 1. Cache sizes and associativity for the different pro-
cessors.

processor original optimized speedup
(seconds) (seconds)

PentiumII 147s 105s 40%
Itanium 98s 66s 48%
Alpha21264 56s 45s 24%

Table 2. The execution times and speedup of the original
and the optimized MCF-program, on three different pro-
cessor architectures.

cessors.

5 Related Work

Most work on visualizing performance bottlenecks for the
programmer has been done for parallel programs[15, 4, 11,
8, 10]. These visualizations mostly focus on visualizing
the communication patterns between the parallel parts in
the program. In contrast to visualization for parallel pro-
grams, relatively little work has been proposed to visualize
cache bottlenecks. In [2], the cache behavior is visualized
through statistical histograms of the cache lines. The his-
tograms show which cache lines are most frequently used.
In [12], the cache lines are visualized, and the contents of
that cache line are indicated by a color. Every time the con-
tents of an address is copied into a cache line, the color of
that cache line is updated so that it represents the cached ad-
dress. Both [2] and [12] visualize the cache behavior cache-
centric, i.e. the underlying cache structure and its operation
is visualized. This doesn’t allow to clearly visualize the
cache behavior of the whole program, because the cache
contents is frequently refreshed and the huge data space
of a program is observed through the tiny cache window.
This problem is avoided in [14], where the cache behav-
ior is visualized program-centric. The program locality is
shown by assigning a single pixel to every memory access.
The color of the pixel indicates whether the correspond-
ing access was a hit or a cold, conflict or capacity miss.
Furthermore, it is possible to relate the visualized mem-
ory trace with the source code. However, this visualization
is only feasible for programs which generate short mem-
ory access traces. Furthermore, since the hits and misses
are recorded for a particular cache, the programmer is not
steered to optimize the locality independent of the cache
parameters. In contrast, this work is able to visualize mem-
ory access traces of arbitrary length. Furthermore, since

the reuse distance is independent of the precise cache pa-
rameters, it allows the programmer to clearly see the cache
bottlenecks common to a wide range of caches.

6 Conclusion

The discrepancy between processor and memory speed af-
fects processor performance substantially. On top of that,
the speed difference is doubling every two years. There-
fore, all possible means must be used to diminish the speed
degradation due to cache misses. In the past, much work
has been done on improving hardware and compiler tech-
niques to reduce cache misses. However, there are still a
substantial number of cache misses left over. Especially
the capacity misses are hardly reduced.

In this paper, it is proposed to complement the hard-
ware and compiler techniques with programmer-driven
program optimizations to improve the data locality. How-
ever, the cache misses are not obvious from the source
code, and therefore a tool must be devised which clearly
indicates the causes of poor cache behavior in the source
code. In order to make sure that the indicated cache bottle-
necks are the bottlenecks for a wide range of cache config-
urations, the reuse distance was used to measure the pro-
grams data locality. It has the advantage that it is indepen-
dent of cache size and associativity, and it predicts cache
behavior for a wide range of cache architectures. The visu-
alization of the long reuse distances steers the programmer
to locality optimizations which are independent of the un-
derlying cache. As a case study, the MCF program from
SPEC2000 was studied. A simple optimization, based on
the visualization, resulted in a speedup between 24% and
48%, on CISC, RISC and EPIC processors with different
underlying cache architectures, even after full compiler op-
timization. This shows that the reuse distance visualiza-
tion gives a good insight in the poor locality patterns in the
program, and enables portable and platform-independent
cache optimizations.

Acknowledgements

This research was supported by the Flemish Institute for
promotion of scientific and technological research in the
industry (IWT).

References

[1] K. Beyls and E. H. D’Hollander. Reuse distance
as a metric for cache behavior. InProceedings of
PDCS’01, 2001.

[2] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum,
and P. Hanrahan. Rivet: A flexible environment for
computer systems visualization.Computer Graphics-
US, 34(1):68–73, Feb. 2000.

[3] M. D. Hill and A. J. Smith. Evaluating associativity
in CPU caches. IEEE Transactions on Computers,
38(12):1612–1630, Dec. 1989.

[4] W. M. Jr., T. J. LeBlanc, and A. Poulos. Waiting
time analysis and performance visualization in carni-
val. In ACM SIGMETRICS Symp. on Parallel and
Distributed Tools, page 1, May 1996.

[5] Open research compiler.
http://sourceforge.net/projects/ipf-orc.

[6] D. A. Patterson and J. L. Hennessy.Computer Ar-
chitecture – A Quantitative Approach. Morgan Kauf-
mann Publishers, Los Altos, CA 94022, USA, second
edition, 1995.

[7] G. Sander. Graph layout through the vcg tool. InDI-
MACS International Workshop GD’94, Proceedings,
Lecture Notes in Computer Science 894, pages 194–
205, 1995.

[8] S. R. Sarukkai, D. Kimelman, and L. Rudolph. A
methodology for visualizing performance of loosely
synchronous programs.Journal of Parallel and Dis-
tributed Computing, 1993.

[9] R. A. Sugumar and S. G. Abraham. Efficient simu-
lation of caches under optimal replacement with ap-
plications to miss characterization. In B. D. Gaither,
editor, Proceedings of the ACM Sigmetrics Confer-
ence on Measurement and Modeling of Computer
Systems, volume 21-1 ofPerformance Evaluation Re-
view, pages 24–35, New York, NY, USA, May 1993.
ACM Press.

[10] B. Topol, J. Stasko, and V. Sunderam. Pvanim: A
tool for visualization in network computing environ-
ments. Concurrency: Practice & Experience, page
1197, 1998.

[11] S. J. Turner and W. Cai. The ‘logical clock’ approach
to the visualisation of parallel programs. InProceed-
ings of Workshop on Monitoring and Visualization of
Parallel Processing System, 1992.

[12] E. Vanderdeijl, O. Temam, E. Granston, and G. Kan-
bier. The cache visualization tool.IEEE Computer,
30(7):71, 1997.

[13] W3C. Xsl transformations (xslt) version 1.0.
http://www.w3.org/TR/xslt.

[14] Y. Yu, K. Beyls, and E. D’Hollander. Visualizing the
impact of cache on the program execution. Ingezon-
den naar Information Visualization 2001.

[15] O. Zaki, E. Lusk, W. Gropp, and D. Swider. To-
ward scalable performance visualization with Jump-
shot. High Performance Computing Applications,
13(2):277–288, Fall 1999.

	Introduction
	Reuse Distance
	Reuse pair visualization
	Case Study
	Related Work
	Conclusion

