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Abstract

In this paper, we describe JiTI, a novel technique for instrumenting program
binaries. The technique correctly deals with programs that contain tradition-
ally hard to instrument features such as data in code, code in data, and self-
modifying code. The technique does not require reverse engineering, program
understanding tools or heuristics about the compiler or linker used. The basic
idea is that a running process is cloned in memory, and that the cloned process is
completely instrumented (code + data). By using the code of the instrumented
process (clone) on the data of the original process, we can guarantee a correct
instrumentation of the full code while keeping the process data untouched. JiTI
has been completely implemented for SPARC processors and is used in a data
race detector.

1 Introduction

Binary modification is the ultimate language-independent technique to change pro-
grams. A binary modification tool reads a binary program, analyses it, modifies it,
and creates a new binary ready for execution. The modification can range from in-
serting profiling code, optimizing the code, translating it to a new architecture, etc.
The method works on machine language instructions, and is therefore programming
language independent. Since it does not depend on the original program sources,
it can also be applied to libraries, programs consisting of parts written in different
programming languages, etc. In order words, anything that can be understood by
the underlying processor, can also be understood by the binary modification tool.

There are several successful applications of binary modification systems around:
examples are the basic block counting tools QPT [Ball92] and EEL [Laru96] for
Sun SPARC machines, ATOM [Sriv94] and Alto [DB96] for Digital Alpha machines,
ETCH [Lee] for Intel machines running Windows NT and Paradyn for multiple ar-
chitectures [Mill95, Zand99, Xu99].

Besides the nice features of binary modification, there are is also a dark side.
Instrumenting binaries basically boils down to inserting instruction in the binary,
requiring relocation of data and code. In order to do this, one must be able to
disassemble the program into basic blocks and control flow graphs. This requires a
sophisticated analysis of the binary, often requiring an enormous amount of resources
(both in time and space). Moreover, in order to be able to modify a binary program,
one should exactly know what the program is doing. Without extra information about
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the binary (e.g., the compiler that generated it), it can be very hard to recognize data
in code, code in data, constructs like user-level context switches, self-modifying code,
hand-written assembly language, etc.

JiTI offers a solution that effectively deals with this kind of unconventional code.
The tool has been implemented for SPARC processors (tested on MicroSPARC, Hy-
perSPARC, SuperSPARC and UltraSPARC) and was successfully used as the un-
derlying mechanism for RecPlay, a data race detector [Rons99]. In the data race
detector, JiTI is used to instrument every memory operation in a program.

The next section contains a detailed description of the implementation of the JiTI-
concept for the SPARC architecture. An evaluation of the implementation is given
in section 3. The paper ends with an overview of related work and the conclusions.

2 JiTI for the SPARC

Two major difficulties when inserting code into binaries are

1. correctly distinguishing between code and data (especially when code is located
in data, when data is located in code, or when self-modifying code is used);

2. correctly relocating the code and data after inserting instrumentation code.

In existing systems, these two difficulties can only be solved by applying a sophis-
ticated analysis (disassembling the program into basic blocks and control flow graphs)
of the binary. Hereby, assumptions have to be made about the origin of the code.
Most systems can be broken by offering hand-written machine code to it. A careful
analysis for large programs can take an inordinate amount of resources (both in time
and space).

JiTI solves these problems (i) by creating two versions of the process: one for the
data accesses and one for the code accesses and (ii) by not inserting instrumentation
code in the process, but by replacing instructions by calls to instrumentation code. By
cloning a process and by executing the code from an (instrumented) copy, and using
the data from the other copy, we get rid of the need to distinguish between code
and data. Moreover, as we don’t insert instructions but merely replace individual
instructions by other instructions no relocation is necessary, removing the overhead
required by contemporary instrumentation tools.

Given the size α of the original process, a clone is created at address δ (> α) (up
to address δ + α). Since we do not insert instructions, but only replace instructions,
the instrumented version of the instruction at address i will reside at address δ + i.

We now have access to two copies, both containing the original code and data.
However, one copy will be entirely considered as data, and the other copy will be
entirely considered as code. In order to make sure that data is taken from one copy,
and the code from the other copy, we will have to modify addresses that do not
point to the right copy (by increasing or decreasing them with δ). It turns out that
addresses used to access data are mostly absolute addresses, while, on contemporary
microprocessors, code addresses are mostly relative addresses (position independent
code). Since relative addresses do not require relocation when moved to another
location in memory, the best choice is to fetch the code from the clone, and the data
from the original copy of the process. This means that the relocation effort can be
limited to the rare –especially on a SPARC processor– absolute code addresses (to
make sure that the execution will never jump back to the non-instrumented version



of the process1) and to the rare code-relative data addresses that might be used in
the code (e.g., for data that is located in the code, such as address tables).

In these cases where the relocation cannot be done at cloning time (e.g. for memory
operations, where it is impossible to distinguish the memory operations that use
relative addresses from those that use absolute addresses), it suffices to check the
addresses on-the-fly by instrumenting the instructions that make use of them.

The instrumentation of the clone is performed before the program starts. In
addition, code written during execution is instrumented on the fly. This can be used
to deal with self-modifying code: store instructions are instrumented to write the
data to the original and a trap instruction to the clone. If the trap instruction is ever
executed, JiTI intercepts the trap and instruments the instruction (if necessary).

Although JiTI is applicable to most contemporary microprocessor architectures,
porting it requires a non-trivial engineering effort. In this paper, we describe the
SPARC implementation which was created to support RecPlay, a race detection
tool [Rons99]. The operating system was Solaris from SUN. The choice for the SPARC
was certainly not motivated by simplicity, for the following reasons.

1. The register windows makes it complicated to access the activation records of
other procedure/functions.

2. The instructions in delay slots are harder to instrument.

3. Accessing and restoring the processor flags in user space is impossible.2 Al-
though JiTI itself does not alter the flags (even for comparing addresses with
δ) it is possible that user provided instrumentation code does.

On the other hand, the instruction set of a SPARC processor is highly orthogonal
and all instruction have the same length making the actual instrumentation phase
easier than e.g. for an Intel processor.

The choice for Solaris was neutral. It could have been any operating systems
featuring dynamic loadable libraries. JiTI does not require recompilation. It suffices
to set the Solaris environment variable LD PRELOAD to the name of the correct instru-
mentation library. This library is then loaded each time an application is started.
The library contains a so-called init function; a function that is executed by the
loader before the application is started. It is this function that will instrument the
program (instrumentation phase) and make it ready for the execution phase. Hence,
although JiTI manipulates a program at the very lowest level, it does not require
kernel-level programming, or any modification to the operating system.

2.1 Instrumentation phase

In the instrumentation phase, a clone must be created and instrumented, and the
entry point of the program must be set to point into the clone (main+δ). The instru-
mentation code itself consists of two parts: a part that must be present in order to
guarantee the correct operation of JiTI (the instrumentation of some control transfer

1Some instructions that are known to make use of correct absolute addresses (such as returns),
do not need to be instrumented.

2This is no longer true for the SPARC-V9 architecture, but as JiTI also has to run on older
SPARC processors, JiTI does not use these instructions.



instructions, and the instrumentation of all the load/store operations3), and the user-
defined instrumentation (all load/store operations in the case of data race detection).

A problem with the implementation for the SPARC processor was the fact that
an instruction can be located in a delay slot in which case we have to be careful when
replacing it with a control transfer instruction.

A second problem is that a control transfer instruction such as a function call
(which is needed to call the instrumentation code) might itself have a delay slot which
actually means that one instruction is replaced by a pair of instructions. In practice
we have to resort to an instruction without a delay slot. On the SPARC, there are
only two instructions that can be used for this: a trapping instruction (e.g. illegal
opcode), and BA,a (branch always with annulation of the delay slot). As a branch has
a much lower overhead than a trap, JiTI uses BA,a to jump to the instrumentation
code. Unfortunately, the BA,a instruction has two problems: it does not keep track
of a return address, which is needed to be able to return from the instrumentation
code and the BA,a instruction has a limited range (22 bits or ± 8MB): it is impossible
to jump from the clone to the instrumentation code in the JiTI library (applications
are loaded at low addresses while dynamic libraries such as JiTI are loaded at high
addresses in Solaris). These two problems were solved using trampolines. These are
a kind of tiny subroutines with a built-in return address. Every individual BA,a-
instruction must jump to its individual trampoline4 which will in turn call (using a
CALL that can reach every instruction) the instrumentation routine. The trampoline
is automatically generated during the instrumentation phase. A basic trampoline is
only 4 instructions long (saving the return address, and calling the instrumentation
function) (see Figure 1).

Instructions in delay slots require special treatment. Since we cannot replace
the instruction in the delay slot with a control transfer instruction, we replace the
preceding control transfer instruction with a jump to a trampoline. The trampoline
used is bigger as the return address now depends on the outcome of the control
transfer instruction that is associated with the delay slot, and this requires some extra
computation. Moreover, the trampoline also has to check for the possible annulation
of the instrumented delay slot instruction.

Additionally, we also replace the instruction in the delay slot by a BA,a and
a trampoline, in case the delay instruction would be the target of another control
transfer instruction.

2.2 Execution phase

During the actual execution of the application, JiTI will jump (using the trampolines)
to the instrumentation routine. The instrumentation routine always knows where it
was called from (the address is placed in register %l3 by the trampoline). At that
location, there will be a BA,a-instruction, but by subtracting δ from this address, the
original instruction is found back.

JiTI has to perform two steps in the execution phase: calculate the address used
by the memory operation and execute the original operation.

3On a SPARC processor it is impossible to distinguish the memory operations that use relative
addresses from those that use absolute addresses. Therefore, all memory operations have to be
checked to make sure that they don’t read from the (instrumented) clone.

4It is possible –for very large programs– that the trampoline is unreachable using a BA,a with a
22-bit offset. If this is the case, the instruction is replaced with a trapping instruction that jumps
to a routine in JiTI, from where the actual instrumentation routine will be called.



Figure 1: Using trampolines to save the return address.

Calculating the used address in the naive way, namely, decoding the instruction
and explicitly processing the address calculations is quite time consuming. Therefore,
we choose another approach: changing the opcode. Thanks to the orthogonal coding
structure of the SPARC instruction set, the binary representation of the load/store
operations, and the corresponding add-instruction that calculates the memory ad-
dress used have many bits in common. By overwriting the highest 13 bits of a
load/store operation with the fixed bit pattern 1000110000000, we can produce an
add-instruction that will compute the source/destination address in register %g6 (see
Table 1).5 Executing this instruction will leave the address used in this register. Of
course, this means we have to save/restore %g6.

For executing this instruction and the original instruction a method was developed
that takes advantage of a feature of the SPARC architecture that allows to place a
control transfer instruction in the delay slot of another control transfer instruction.
The effect of this is that the instruction at the target of the first control transfer will

5In case the instruction uses %g6 in the address mode, we use another register to calculate the
address. The test whether %g6 is used is only performed once: during the instrumentation phase.



31-30 29-25 24-19 18-14 13 12-5 4-0
LDx [rs1+rs2],rd 11 rd op3 rs1 i=0 unused rs2
LDx [rs1+simm13], rd 11 rd op3 rs1 i=1 simm13
STx rd,[rs1+rs2] 11 rd op3 rs1 i=0 unused rs2
STx rd,[rs1+simm13] 11 rd op3 rs1 i=1 simm 13
ADD rs1,rs2,%g6 10 00110 000000 rs1 i=0 unused rs2
ADD rs1,simm13, %g6 10 00110 000000 rs1 i=1 simm13

Table 1: Opcodes used for load and store instructions and additions. ‘x‘ denotes the
width of the memory value used, as defined by op3.

be executed as a single instruction after the second control transfer, after which the
program simply continues.

The SPARC processor uses two registers (PC and nPC) to deal with control trans-
fer instructions. The 32-bit PC contains the address of the instruction currently being
executed and nPC holds the address of the next instruction to be executed (assuming
a trap does not occur). Most of the time, nPC=PC+4. During the execution of a
delay instruction, the nPC points to the target of the control transfer instruction,
while the PC points to the delay instruction. The jump-and-link instruction jmpl
jump address,link register changes PC and nPC (concurrently) as follows:

reg[link register] ← PC;
PC ← nPC;
nPC ← jump address;

In order to execute the generated add-instruction, JiTI uses the combination that
is shown in Figure 2. This method is simple and works without interpreting the
instruction, without generating code, and without the need to flush the cache.

After executing the modified instruction but before executing the original in-
struction, the instrumentation routine must check the address that will be used by
the original instruction (this address was calculated by executing the modified in-
struction). For memory operations, the address should point to the original process
(address < δ). Memory operations that use relative addresses (e.g. for accessing data
in the code segment) will use addresses > δ, possibly reading instrumented ‘code’.
Therefore, we make sure in this case that the address is smaller than δ by subtracting
δ. The opposite is true for control transfer instructions that use absolute addresses
(only jmpl on SPARC processors). We have to make sure that the address used is
larger than δ, forcing the control transfer instruction to stay in the instrumented
clone. Therefore, if the address used is smaller than δ, we simply add δ and jump to
this address.

Store operations require special attention as it is possible that they are used to
change instructions (self-modifying code). Instead of writing an instrumented version
of the instruction to the clone area JiTI writes a trapping instruction in the clone.
If the new instruction is executed, a trap will occur. JiTI intercepts the trap and
will instrument the instruction (and possibly create a trampoline) at that moment.
This way, store operations that wrote real data (the most common case) will not be
instrumented, limiting the number of trampolines created.



2.3 Extra features

Due to the dynamic nature of JiTI, dynamic instrumentation is possible. This allows
for the instrumentation of self-modifying code (see above) and for two additional
types of dynamic instrumentation:

in time: it is possible to add or remove the instrumentation from the clone during
the execution. This feature is used by our data race detection tool: as data
races only occur in a parallel execution, there is no need to trace the mem-
ory operations that are performed during the sequential start of the program.
This type of instrumentation is accomplished by starting with an uninstru-
mented clone that is instrumented upon the creation of a second thread (the
thread create() function that performs this is intercepted by JiTI).

in space: it is possible to limit the instrumentation to certain parts of the pro-
gram. This feature is also used by our data race detector: we trace memory
operations performed by the application or statically linked code, but not by
dynamically linked code (that contains the Solaris synchronization operations).
This approach enables us to make a distinction between data and synchroniza-
tion races [Rons99]. This type of instrumentation is accomplished by forcing
JiTI not to instrument the PROCEDURE LINKAGE TABLE code that is used to find
the location of dynamically linked code.

address instruction
1000 instr1
1004 jmpl %g6,%g6
1008 jmpl %g6+8,%g0
1012 instr2
...

...
2000 add %l1,8,%g6

Figure 2: A fragment of code with a control transfer instruction in the delay slot of
another control transfer instruction. The instructions are executed in the following
order: 1000, 1004, 1008, 2000, 1012. Here %g6 is used to hold in succession the jump
address, the return address and the result value (see Table 3)! The instruction at
address 2000 is the instruction that was generated by JiTI to calculate the memory
address, in this case for the instruction ld [%l1+8],%l2.

PC nPC %g6 instruction executed
1000 1004 2000 instr1
1004 1008 2000 jmpl %g6,%g6
1008 2000 1004 jmpl %g6+8,%g0
2000 1012 1004 add %l1,8,%g6
1012 1016 reg[%l1]+8 instr2

Figure 3: Executing the code that is depicted the previous table.



3 Experimental evaluation

JiTI was thoroughly evaluated using a number of small test program with code in
data, data in code, self-modifying code and hand-written assembly code. One should
notice that the occurrence of these constructions is not abnormal in contemporary
code. E.g. in order to support C-functions that return a structure (Figure 4) the

typedef struct _test {int a;} test;

test foobar(void){
test c;
return c;

}

void main(){
test b;
b=foobar();

}

Figure 4: A C-program containing a function that returns a struct.

compiler places data between code in the object code6: the size of the structure
(4 bytes) is placed between the instructions of the main-routine (line 10968) and
this number will be checked by the foobar()-function to make sure that there is
enough space on the stack (Figure 5). In this case, the number 4 has no meaning

00010958 <main>:
10958: SAVE %sp, -104, %sp
1095c: ADD %sp, 0x5c, %l0
10960: CALL 10948 <foobar>
10964: ST %l0, [ %sp + 0x40 ]
10968: UNIMP 0x4
1096c: LD [ %sp + 0x5c ], %o1
10970: RET
10974: RESTORE

Figure 5: The object code generated by a compiler for the code depicted in Figure 4.

as an instruction (unimp), but a struct with another length could cause problems for
certain tools.

The occurrence of code in data and self-modifying is also not unlikely in current
software. E.g. applications that are dynamically linked (almost all software on Solaris)
uses a PROCEDURE LINKAGE TABLE to enable dynamic linking. This is a table in the
data segment that is changed, during the execution, by the dynamic linker. Figure 6
shows, on the left, the code before and, on the right, after the dynamic loader did
its work. As JiTI instruments code just before the execution starts, but after the
dynamic loader did its work, JiTI will see, and instrument, the right version of the
code.

6Using the Sun compiler or gcc on a SPARC at least.



00020a3c: SAVE %sp,-64,%sp SAVE %sp,-64,%sp
00020a40: CALL ff3b2d68 CALL ff3b2d68
00020a44: NOP NOP
00020a6c: SETHI 30,%g1 SETHI 30,%g1
00020a70: BA,a 20a3c SETHI 3fc47f,%g1
00020a74: NOP JMPL %g1+1016,0
00020a78: SETHI 3c,%g1 SETHI 3c,%g1
00020a7c: BA,a 20a3c SETHI 3fc65a,%g1
00020a80: NOP JMPL %g1+8,0

Figure 6: The PROCEDURE LINKAGE TABLE, before and after the dynamic linker did
its work.

program no. of instr. replaced instr. executed
instr. mem jmpl % mem jmpl

qs sequential 211 33 2 16.6% 3 935 868 0
qs parallel 286 37 2 13.6% 3 935 868 0
eqntott ex0.eqn 10 876 1078 19 10.1% 18 475 60
espresso dc1.in 69 344 21 938 27 31.7% 324 537 661
compress in 3 688 832 3 22.6% 4 666 683 0
uncompress in.Z 3 688 832 3 22.6% 3 272 282 0
sc < load1 43 171 7 921 23 18.4% 32 992 768 1 574
xlisp li-input.lsp 24 866 7 119 16 28.7% 33 490 004 225 873
ijpeg specmun.ppm 72 064 29 576 656 42.0% 2 612 267 939
perl primes.pl 118 258 30 016 82 25.4% 3 351 214 103 839
m88ksim < ctl.raw 53 828 14 874 50 27.7% 412 533 658 1 468 231

Table 2: Results for test programs: the total number of instructions, the number of
instrumented instructions and the number of executions of these instructions.

It is nice to know that JiTI is able to handle hard to instrument code but the main
criterion used to compare instrumentation tools is the slowdown caused by the instru-
mentation. Therefore, tables 2 and 3 show some results obtained for quicksort and
some SPECint92 and SPECint95 programs. We used the JiTI implementation de-
scribed above: the addresses used by all memory operations were collected. The first
table shows static and dynamic information. The second column shows the number
of instructions7 in the code section of the program. The next two columns show the
number of instructions (either memory operations or control transfer instructions)
that were replaced, during the instrumenting phase, by a branch to a trampoline.
Of course, this figure also includes the number of ‘instructions’ in the data segment
that were replaced. The next column shows the percentage of instructions that were
instrumented. The last two columns show the number of executed instrumented in-
structions. This is the number of times JiTI was called by the program to guarantee
that the clone keeps executing correctly: fetching code from the clone and data from
the original process. The huge amount of indirect jumps for xlisp, perl and m88ksim
is caused by the fact that these programs are in fact interpreters and hence several
time consuming register indirect jumps are used (especially for m88ksim).

7This number was obtained by using a disassembler to count the number of instructions.



program execution time setup slowdown
normal JiTI time JiTI ATOM

qs sequential 0.51 7.50 0.12 14.7 4.92
qs parallel 0.34 4.36 0.13 12.8 N/A
eqntott ex0.eqn 0.41 0.74 0.21 1.8 5.35
espresso dc1.in 0.11 1.16 0.80 10.5 7.91
compress in 0.50 5.05 0.14 10.1 4.34
uncompress in.Z 0.44 3.92 0.14 8.9 4.12
sc < load1 10.77 85.50 0.60 7.9 3.12
xlisp li-input.lsp 2.56 54.30 0.36 21.2 7.86
ijpeg specmun.pmm 0.66 13.56 0.86 20.5 7.75
perl primes.pl 0.52 6.89 0.75 13.2 7.57
m88ksim < ctl.raw 25.28 695.28 0.71 27.5 7.35
average 11.3 5.75

Table 3: Results for test programs: the execution times: normal execution, instru-
mented execution and time to instrument the program.

Table 3 shows information about the execution times. The second column shows
the normal execution time for the uninstrumented program. The next column shows
the execution time when JiTI is turned on. This figure includes the setup time,
i.e., the time to setup a clone and instrument it, and the execution time. The next
column shows the setup time alone. We notice that JiTI introduces a small setup
time (0.1 - 0.9s) per program run, only a small fraction of the total execution time.
Hence, there is no need to statically instrument the program. It is instead easier
to redo the instrumentation before every run. The last column shows the slowdown
which is on the average limited to 11.3. This is reasonable given the fact that every
load/store instruction is replaced by a jump to a trampoline, which in turn calls the
instrumentation routine.

The last column of this table is the slowdown we obtained with ATOM, a widely
used instrumentation tool for Alpha machines. ATOM took between 4 and 10 seconds
to produce the instrumented program (on a much faster machine). This should be
compared with the time JiTI needs to instrument the program (0.1-0.9s). The average
slowdown using ATOM is about 2 times better than using JiTI; this is caused by the
fact that Alpha code is easier to instrument as there are no delayed branches or
register windows.

4 Related work

There are not that many systems that allow to trace at the machine instruction level.
Probably the best known static binary instrumentation tool for SPARC based ma-
chines is EEL [Laru96]. EEL inserts so-called snippets, containing new code, into an
application. There are some places where snippets cannot be inserted, e.g. after a con-
trol transfer instruction. EEL cannot deal with self-modifying code and unrestricted
indirect jumps and has problems with hand-written assembly code [Arpa96].

A dynamic binary instrumentation tool is Paradyn and its derivated DynInst
API [Mill95, Holl97]. The tool runs on a number of processor architectures (includ-
ing SPARC) and was developed for performance measurements. The system allows



instrumentation (in the form of code patches) to be added (‘spliced’) at procedure
entries, procedure exits and individual call statements. The instrumentation routine
can operate on counters, timers, constants, parameters to a procedure or a procedure
return value. Therefore, the instrumentation of a single instruction or the detection
of the address used in a memory operation is not possible. As Paradyn does not insert
instructions but replaces instructions by a call to a routine, the target of a control
transfer instruction will not change. Self-modifying code cannot be dealt with.

A novel and dynamic instrumentation tool for instrumenting kernels is described
in [Tamc99a, Tamc99b]. Although the tool is dynamic, it performs the same analysis
as static tools to create an interprocedural control-flow graph of basic blocks and
finding live registers for each basic block. As such the tool has the same problems
as static tools: data in code, code in data and handwritten and self-modifying code.
However, relocation is not needed as the tool replaces instructions with a branch to
springboards (the equivalent of trampolines in JiTI) to jump to the actual instrumen-
tation code. Unfortunately, the tool deals in an incorrect way with delayed branches:
the delayed branch and the delayed instruction are both moved to the springboard
and executed over there. This is incorrect if the delayed instruction uses the link
register used by the control transfer instruction: as the instructions are moved, the
return address saved in the link register is not the original address. Moreover, the
delay instruction is not instrumented. This causes problems if the delay instruction
is the target of a control transfer instruction (see section 2.1).

5 Conclusions

In this paper, we have described JiTI, a program instrumentation technique that is
able to correctly instrument hard to instrument features such as data in code, code
in data and self-modifying code. JiTI is implemented as a dynamic library, allowing
it to be applied to existing applications. Hence, the instrumentation is a property
of an execution, and not of the program itself. JiTI has been implemented for the
SPARC architecture, and is currently used as basic infrastructure for our RecPlay
data race detector.
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