
TOWARDS SYNTHETIC BENCHMARK CIRCUITS FOR
EVALUATING TIMING-DRIVEN CAD TOOLS

Dirk Stroobandt
�

Peter Verplaetse
�

Jan Van Campenhout

University of Ghent, Department of Electronics and Information Systems, Belgium�
dstr, pvrplaet, jvc � @elis.rug.ac.be

ABSTRACT

For the development and evaluation of CAD-tools for partition-
ing, floorplanning, placement, and routing of digital circuits, a huge
amount of benchmark circuits with suitable characteristic parame-
ters is required. Observing the lack of industrial benchmark circuits
for use in evaluation tools, one could consider to actually generate
such circuits. In this paper, we extend a graph-based benchmark
generation method to include functional information. The use of a
user-specified component library, together with the restriction that
no combinational loops are introduced, now broadens the scope to
timing-driven and logic optimizer applications. Experiments show
that the resemblance between the characteristic Rent curve and the
net degree distribution of real versus synthetic benchmark circuits
is hardly influenced by the suggested extensions and that the result-
ing circuits are more realistic than before. However, the synthetic
benchmark circuits are still very redundant, compared to exist-
ing sets of real benchmarks. It is shown that a correlation exists
between the degree of redundancy and key circuit parameters.

1. INTRODUCTION

The production of VLSI chips requires the layout (floorplanning,
placement and routing) of the chip design on a carrier. With the
advent of high level description languages such as VHDL, with the
extensive use of component libraries, and with the standardization
of production parameters, more and more steps in the design cycle
are being automated. Computer aided design (CAD) tools have
become indispensable to cope with the complexity and the limited
time resources.

For the high demands put on system performances these days,
CAD tools often lack flexibility. Improving the existing CAD
tools therefore remains necessary. New algorithms for (timing-
driven) partitioning, floorplanning, placement, routing, etc. (we
refer to such applications as “partitioning applications”) should be

�
Post-doctoral Fellow of the Fund for Scientific Research – Flanders

(Belgium) (F.W.O.).�
Research Assistant of the Fund for Scientific Research – Flanders

(Belgium) (F.W.O.).

evaluated thoroughly and this entails the need for “good” evaluation
tools. Crucial to this evaluation is the use of a very large set of
benchmark circuits that consists of a sample of the circuits for
which the CAD tool is aimed.

Initiatives for distributing benchmark circuits have been taken
(ISCAS benchmarks, [1, 2], �����). However, most sets of bench-
mark circuits used in the research community today are fairly small.
Moreover, these benchmark circuits are often not large enough to
be useful for the complex tools we want to evaluate today. Last but
not least, they often do not have the right parameter characteris-
tics. For instance, the ISCAS85 benchmark circuits were intended
specifically for evaluating ATPG (Automatic Test Pattern Genera-
tion) tools and, hence, contain special structures that might deviate
from what can be expected in a general circuit.

New sets of benchmark circuits are definitely needed for eval-
uating new tools that are developed in several research groups.
Only recently, synthetic benchmark generation is becoming to be
recognized as a viable alternative. The major problem of synthetic
benchmark generation is the requirement that, for the application
the benchmark circuits are intended for, they are good representa-
tives of real circuits, i.e., circuits that could be the result of a real
design process.

The research community has tried to come up with different
ways of generating random circuits (some of them are presented in
[3], p. 81). An obvious way is to select a number of logic gates and
then connect the gate terminals randomly with a certain probability.
Unfortunately, it is questionable if such “circuits” can be accepted
as realistic logic circuits. For this reason, the first successful tri-
als of benchmark generation were based on applying a sequence
of random transformations on an initial (existing) circuit [4, 5].
Hutton et al. [6] addressed the problem of random generation of
circuits “from scratch”. They defined properties such as size, delay,
physical shape, edge-length distribution, and fanout distribution to
describe the physical characteristics and generated circuits with an
exact parameterization (“clones” of existing circuits).

For the evaluation of CAD tools, only a finite set of particu-
lar benchmark circuits can be used. There is no way of proving
that algorithms performing well for this set are suitable for every
circuit. This would require an immensely huge set of benchmark
circuits. Therefore, new algorithms can only be tested efficiently
on their merits by a careful evaluation with respect to those char-
acteristic parameters of circuits that are felt to be most important
for the particular application. This allows the use of a smaller set
of benchmark circuits provided they have characteristics “on de-
mand”. The main advantage of synthetic benchmark circuits is the
controllability of a single characteristic parameter at a time, with
limited influence on the other parameters. This feature enables us

to draw much more funded conclusions from experimental results.
The main problem remains to decide what are the characteristic
parameters of circuits that have to be controlled in order to obtain
viable benchmark circuits.

For the evaluation of algorithms that are related to partition-
ing, the interconnection complexity is the main characterization
parameter. It is reflected through Rent’s rule and the so called Rent
exponent of the circuit [7] (see section 2). Darnauer and Dai [8]
were the first to attempt to generate random benchmark circuits,
based on Rent’s rule. Their program, called rmc1, generates large
random circuits with a specified number of inputs, outputs, blocks,
terminals per cell, and Rent exponent. However, the Rent exponent
is treated as a target value that the program aims for and the syn-
thetic benchmark circuits only follow Rent’s rule on average, thus
losing some of the controllability advantages. The rmc program
also shows some other drawbacks, resulting from the hierarchical
top-down approach that is followed (first, interconnections are laid
out at the highest level; only at the end, connections are made
between simple gates).

In [9], Stroobandt presented a benchmark generation method,
called gnl, that is also based on Rent’s rule but that uses a bottom-
up approach. This enhances the control on the various parameters.
More importantly, and unlike Darnauer and Dai’s method, the pro-
gram also ensures a viable net degree distribution. The program
gnl lets the user predefine the number of gates, the number of
primary in- and outputs, and the Rent exponent, as well as the
terminals-per-block distribution. A thorough theoretical deduction
of several restrictions on the input parameters ensures that the pro-
gram will eventually find a solution that obeys both Rent’s rule and
a power law net degree distribution. Hence, for the first time, a
maximum amount of controllability is obtained while the graph-
based properties of real circuits are maintained. The basic method
will be reviewed in section 3.

In this paper, we seek to include timing properties in the evalua-
tion procedure, since timing-driven partitioning and placement is a
major concern these days. Whereas previous efforts for benchmark
generation mainly focused on graph-based properties of circuits,
we wish to combine the best of graph-based properties with the
possibility to include timing information. Basically, what is miss-
ing in the graph-based view, is functionality. Logic optimizer tools
and test generation programs need information on the function of
the gates, placers need information on the block area, and routers
need information on the terminal positions. It is therefore desired
to know the specific type of the individual gates. This is the basic
information the circuit has to contain for timing-driven tools to be
able to run on them properly. Of course, introducing functionality
requires a correct behaviour at the logic level, hence the generated
circuits should be free from combinational loops.

To obtain this goal, we extend our previous benchmark gener-
ation program gnl2 [9] by enabling the choice of gates from a
user-defined library. The inclusion of flip-flops also enables us
to generate sequential circuits. Special care is taken to exclude
connections that introduce combinational loops. The experimental
results show that this does not fundamentally change the charac-
teristic Rent curve of the generated circuit, nor the net degree dis-
tribution, two characteristic parameters of the graph-based model.
An exception is to be made for the number of primary inputs and
primary outputs that can deviate under extreme circumstances. A

1rmc is the acronym for “Random Mapped Circuit”
2gnl is the acronym for “Generate NetList”

Logic block

Net

Pin

Module

(a) (b)

Figure 1. Model of a circuit (a) and the partitioning of the
circuit into modules (b).

number of experiments investigates when this occurs and what is
the underlying reason for it. Although the results show a correla-
tion of the degree of redundancy in synthetic benchmark circuits to
the degree of redundancy in real benchmark circuits, the synthetic
benchmark circuits are still more redundant than their original
counterparts. Further extensions to the generation procedure are
discussed to mitigate this problem.

Section 2 gives an overview of the parameters that characterize
real circuits and section 3 describes the basic procedure of gen-
erating benchmark circuits. The features of our new benchmark
generation method will be the subject of section 4 whereas section 5
is devoted to some interesting experimental results. In section 6,
some of the weaknesses of the proposed method are addressed and
an indication is given on how solutions can be found in future work
on this topic.

2. CHARACTERISTIC CIRCUIT PARAMETERS

We want to model the partitioning properties of circuits, i.e., we
want to have a notion of their interconnection complexity. This
interconnection complexity is reflected in the Rent exponent and
the net degree distribution. For a clear understanding, we will start
this section with an overview of the basic definitions used and we
will continue with a discussion on the Rent exponent and the net
degree distribution.

2.1. Definitions
A circuit can be represented by a set of interconnected blocks as
in figure 1(a) (the blocks can be the representation of transistors,
gates, or even whole circuits). An interconnection between blocks
is called a net. A net that is connected to more than two blocks is
called a multi-terminal net. Some of the nets are also connected
to the outside of the circuit. These nets are called external nets
(as opposed to the internal nets which only connect blocks within
the circuit). In order to model these external nets properly, we
introduce a new kind of block which we will call a pin. The
other blocks will be called logic blocks. Every external net will be
connected to exactly one pin. The net degree of a (multi-terminal)
net will be defined as the number of blocks (logic blocks and pins)
the net is connected to. A net degree distribution is a collection
of values, indicating, for each net degree � , how many nets have a
net degree equalling � .

Partitioning a circuit means dividing this circuit into disjoint
sub-circuits (called modules), each containing a subset of the blocks
(figure 1(b)). This partitioning is done using some kind of crite-
rion. Generally, the criterion is to minimize the number of nets
cut, i.e., the number of nets crossing the borders of modules in
the partition. Nets that are cut by module boundaries are shared
between two or more modules and are said to be external to the
modules. Therefore, the net will be split into a number of sub-nets,

%

100
70
50
33
25
18
13
10
7
5

3
2

1

�P

�B

1

10

100

1000

1 10 100 1000 10000

Rent’s rule
Average

Figure 2. Number of pins versus number of blocks for every
partition in the ‘ratiocut’ partitioning of the ‘c3540nr’ bench-
mark circuit, compared to Rent’s rule. The size of the circles
corresponds to the percentage of modules that has P pins and
B blocks in a pool of modules around an average number of
blocks.

one for each module that shares the net. A new pin will be assigned
to each sub-net (if the net was already external to the circuit then
the pin assigned to it can be reused for one of the sub-nets). Each
module can then itself be seen as a circuit and can be partitioned
further. A partitioning process where the modules themselves are
recursively partitioned will be called a hierarchical partitioning
method. The ratiocut partitioning method [10] is known to be
one of the better hierarchical partitioning methods [11] and will be
used throughout this paper.

2.2. Rent’s rule: interconnect complexity measure
Circuits can be classified on the basis of the notion that some
circuits have a totally different structure of interconnections than
others. These differences in interconnection complexity have been
experimentally observed by Rent and his observations led to the
well-known Rent’s rule [7], a relationship between the average
number of elementary blocks

�
in the modules of a partitioned cir-

cuit, and the average number of the module’s external connections
(pins) � :

������� �	��
 �
1

where ��� is the average number of terminals per logic block, and �
is called the Rent exponent. This exponent is a measure of the in-
terconnection complexity of the circuit. Its value is always smaller
than 1, with increasing values for increasing interconnection com-
plexity. Generally, � ranges from 0 � 47 for regular circuits (such as
Random Access Memories), up to 0 � 75 for complex circuits (such
as fast full custom VLSI circuits) [12]. The validity of Rent’s rule
is a result of the fact that designers tend to build their circuits hierar-
chically, imposing the same complexity at each level of hierarchy.
This leads to the observed “self-similarity” of circuits. Rent’s rule
can be observed in figure 2. The deviation of Rent’s rule from the
data, observed for high values of � and

�
, is known as region

II in Rent’s rule [7, 13]. At the highest levels of the hierarchical
partitioning method, the number of pins is lower than predicted by
equation 1 due to the fact that designers have to deal with the pin
limitation problem in today’s chips.

2.3. The net degree distribution
Another important parameter in characterizing circuits through
their interconnection structure is the net degree of the nets. It
has been observed that more than 75% of the nets in real circuits
are 2- and 3-terminal nets [14]. A more elaborate study on multi-

Ic

Ba

Module a

Cluster module c

Module b

Bc = Ba + Bb

Ia

Oa

Ib

Ob

Bb

Oc

Figure 3. The net generation process.

terminal nets revealed that the distribution of net degrees generally
follows a power law [15]. This power law distribution results
from an accurate model of the behaviour of multi-terminal nets
during the partitioning process. The model has been validated with
benchmark data from the ISCAS benchmark set.

In addition to the requirement that benchmark circuits should
obey Rent’s rule, the power law net degree distribution should be
found as well. Any synthetic benchmark circuit should at least
have a net degree distribution that approximates the power law
distribution in order to be a valid sample of real benchmark circuits.

3. BENCHMARK GENERATION

For partitioning applications, the principal characteristic parameter
to be taken into account is the interconnection structure. Therefore,
the critical part of our benchmark generation method is the process
of generating the netlist. We will call this process the net generation
process.

The net generation process will be explained using figure 3.
Consider two modules a and b that are part of a certain partition
of the benchmark circuit. We shall denote the number of logic
blocks contained in those modules as

���
and

� � , respectively.
The module that is formed by combining modules a and b, the
cluster module c, then contains

��� � � ��� � � logic blocks. The
numbers of inputs (�) and outputs (�) are denoted accordingly.

Basically, there are two types of connections possible between
the modules a and b. The first type connects an output of one mod-
ule with an input of the other module and does not leave the cluster
module. We will therefore call these internal connections. They
are represented by a dashed line in figure 3. The other connections,
the external connections, connect a pin (input or output) of one
module with an input of the other module and leave the cluster
module through a pin (full lines). The pins of the modules a and
b that are not connected through an internal or external connec-
tion are routed directly to a pin of the cluster module (point lines,
these are not considered to be actual connections and will be called
“pseudo-connections”). We do not allow connections between two
pins of the same module since this type of connection can be made
within the module itself (at a lower hierarchical level).

Our basic procedure for benchmark generation (where different
net parts are connected) is the reverse of the partitioning process
described in section 2 (where nets are cut instead of combined). It
is a bottom-up combination of logic blocks and can be described
as follows:

1. All logic blocks in the circuit are generated and given the ap-
propriate number of input and output terminals. The number
of logic blocks and the number of inputs and outputs per logic
block are specified by the user.

2. The logic blocks are paired and connections are made (ran-
domly, but with certain restrictions) between their terminals.
This results in a cluster of blocks with a number of input and
output terminals.

3. The clusters themselves are recursively paired further with
other clusters until all clusters are combined to one circuit.

Of course, the connections made in step 2 of the generation
process have to satisfy certain constraints in order to lead to a
feasible benchmark circuit. First of all, the circuits must comply
with the demand of a similar interconnection complexity as can
be found in real circuits. Therefore, the number of pins for the
cluster module is defined by Rent’s rule (equation 1) � � � ��� � �� .
For circuits where the number of pins should be bounded, we can
also introduce Rent’s region II. Secondly, a power law net degree
distribution should be obtained. For this, it suffices to aim at a
constant ratio of the number of internal connections to the total
number of connections (pseudo-connections are not counted), at
every level of the hierarchical partitioning method [9, 16].

The constraints lead to restrictions on the choice of the number
of connections from different types (see [16]) and can be reduced to
necessary conditions on the circuit parameters (see [16]). If these
conditions are met, a solution is guaranteed that obeys Rent’s rule
(on all hierarchical levels) and the desired power law net degree
distribution. This guarantee can be given beforehand, preventing
us from losing time trying to generate a circuit that is not feasible
at all.

Rent’s region II can be easily imposed. It is sufficient to split the
procedure in two parts. The first part remains the same as before.
In Rent’s region II, the net generation process is to be seen as a new
generation process starting from modules corresponding with the
clusters found from the previous clustering in the normal region.
But, this time, a new Rent exponent is used (resulting in a different
slope for the � versus

�
curve in region II).

4. ADDING FUNCTIONALITY TO GNL

In order to extend the scope of applicability for our benchmark
circuits, we include functionality by allowing the use of a user-
defined library of cells. The number of each type of library cells
can be chosen and the choice of flip-flops enables the generation
of sequential circuits. In our previous work, synthetic benchmark
circuits were only aimed at partitioning applications and therefore
they were merely treated as (directed) graphs. However, using
the benchmark circuits in logic optimizer tools (among others),
we have to ensure that no combinational loops are introduced dur-
ing the net generation process. Therefore, an optional parameter
‘noloops’ is added that changes step 2 of the net generation proce-
dure as follows (figure 3):

� For each input terminal of the modules a and b, a list is
compiled of all output terminals were the input value is ob-
servable through a combinational path. We call this list the
through-list.

� Before a connection is made (e.g., between an output of mod-
ule a and an input of module b), the through-list of the mod-
ule b input is checked against the occurrence of the module

(a) Generated circuit (with loops)

(d) Partitiond circuit (without loops)

1 10 100 1000
1

10

100

1000

1 10 100 1000

1

10

100

1000

(b) Partitioned circuit (with loops)

(�c) Generated circuit (without loops)

Measured Rent curve
Imposed Rent curve

Average

Measured Rent curve
Imposed Rent curve

Average

Imposed Rent curve
Average

Imposed Rent curve
Average

Figure 4. Characteristic Rent curve for the synthetic circuits
with (top) and without (bottom) combinational loops. Imposed
characteristic Rent curve (left) versus the one measured after
ratiocut partitioning (right).

a output.3 If the output is not controllable by the input, the
connection can be made, otherwise the connection is refused.

� If a connection is made, all through-lists are updated to the
new situation.

� If all connections in the cluster module c are laid out, the
through-lists are updated as the through-list for the complete
module c.

At the lowest level, the through-list of the logic gates is easily
obtained. For the general cell types (AND, OR, NOT, NAND,
NOR, XOR), all input through-lists contain all outputs. For flip-
flops, all through-lists are empty since there is no combinational
path between input and output.

Combinational loop prevention thus further restricts the con-
nection possibilities and the restrictions depend on the choice of
interconnections and the order in which they are chosen. In the next
section, we will show that these restrictions do not fundamentally
change the properties of the synthetic benchmark circuit, with the
exception of the situation in which region II is prominent.

5. EXPERIMENTAL ISSUES

In order to check that our benchmark generation method produces
circuits with properties comparable to those of real circuits, we
generate synthetic benchmark circuits based on the parameters of
the ISCAS benchmark circuits and compare the resulting circuits
with the original ones.

5.1. Rent curve

The net generation process induces a characteristic Rent curve in
the synthetic benchmark circuit. This process corresponds to one
single partitioning instance of the circuit, i.e., the reverse of the
generation process. We still have to check whether a similar char-
acteristic Rent curve is observed for another partitioning instance
(preferably the one leading to an optimal partitioning result). In
figures 2 and 4, the characteristic Rent curve is compared for the
ISCAS85 benchmark circuit ‘c3540nr’ and its synthetic counter-
parts. The results for the other benchmark circuits are similar. The
distribution of terminals per logic block has been chosen exactly

3The through-list of the module b input could contain the module a
output as a result of previously made connections.

as in the original benchmark circuit. Figure 2 shows the character-
istic Rent curve of the original benchmark circuit after partitioning
with ratiocut, figure 4(a) shows the characteristic Rent curve
imposed by the generation program gnl, and figure 4(b) shows the
characteristic Rent curve of the synthetic benchmark circuit after
partitioning with ratiocut. Note that figure 4(a) follows Rent’s
rule perfectly (not taking the discretization effect into account).4

A partitioning of the synthetic circuit by ratiocut still gives an
acceptable characteristic Rent curve (figure 4(b)) but the partition-
ing program did not find the optimal solution which results in a
seemingly higher complexity (note that this is probably also the
case in real circuits). In any case, the characteristic Rent curve
obtained through ratiocut partitioning is comparable for the
original benchmark circuit (figure 2) and its synthetic counterpart
(figure 4(b)).5

Figure 4 also shows the Rent plot for the synthetic benchmark
circuit with the ‘noloops’ option set (plots at the bottom). The gen-
eration program gnl is still able to produce a benchmark circuit
with perfect characteristic Rent curve despite a severely limited
choice for connections. After partitioning with ratiocut, the
characteristic Rent curve matches the imposed Rent curve even
better than when the ‘noloops’ option is not set (compare fig-
ure 4(d) to figure 4(b)). This could be expected since the ‘noloops’
option prevents combinational loops. Hence, the interconnection
complexity is more evenly distributed over the hierarchical levels.
Indeed, creating many loops within a hierarchical level increases
the interconnection complexity difference between the “good” cut
and a “bad” one since a loop that is cut introduces two cuts instead
of just one. Therefore, if no loops are present, ratiocut has an
easier job of finding a good cut, even if it did not find the absolutely
best one. This observation seems to indicate that the introduction
of the ‘noloops’ option in gnl automatically results in circuits with
a more realistic characteristic Rent curve.

5.2. Region II in Rent’s rule

If combinational loops are allowed, the intended characteristic Rent
curve in region II is easily reached by gnl. However, with the
‘noloops’ option set, a lower bound seems to exist6 on the number of
circuit pins that can be reached (compare figure 4(c) to figure 4(a)).
Experiments have shown that this lower bound depends mostly on
the following three parameters: the Rent exponent for region II (or,
alternatively, the intended number of primary pins), the number of
flip-flops relative to the total number of circuit blocks, and the
fraction of primary outputs to the total number of pins. Other
parameters, such as the circuit size, only have an insignificant
influence on the bound. Next, we try to valuate the influence of the
three parameters.

Figure 5(a) shows the Rent plot for synthetic benchmark circuits
with different instances of Rent’s region II, in the case that loops are
allowed. The intended characteristic Rent curve is easily reached.
However, the restriction that no combinational loops are allowed

4Only at the lowest levels, there is a small deviation from the desired
characteristic Rent curve due to an excessive number of terminals for some
logic blocks. More details can be found in [16].

5The scaling trend clearly remains visible in figure 4(b), a sign of the fact
that the obedience to the Rent relation is visible in all parts of the synthetic
circuit and is not a mere consequence of an imposed characteristic in some
discrete points.

6There is reason to believe that this bound is not a limitation induced
by gnl, but that it is a fundamental restriction of homogeneous circuits.

(c) (d)

g=0.1
g=0.3
g=0.5
g=0.7
g=0.9

%dff=00
%dff=03
%dff=10
%dff=50

with loops

P=10
P=20
P=30
P=40
P=50

P=10
P=20
P=30
P=40
P=50

(a)

10 100 1000B 10 100 1000B
100

10

P

100

10

P

(b)

Figure 5. Average characteristic Rent curve for synthetic
benchmark circuits with different number of pins (both with
(a) and without (b) loops), different number of flip-flops (c),
and different number of outputs (d).

influences this Rent curve. For a very prominent region II, a lower
bound exists on the number of circuit pins, as can be observed from
figure 5(b). The reason for this is to be found in the (negative) Rent
exponent for region II being very low, which implies that a lot of
pins have to be eliminated in the generation process by making
connections. The number of new connections though is limited by
the requirement of absence of combinational loops.

The value of this lower bound depends on how difficult it is
to make connections without producing a combinational loop. To
demonstrate this, we increase the relative number of flip-flops in
figure 5(c) (for the total number of logic blocks remaining the same)
for synthetic benchmark circuits with a very prominent region II.
One can see that, when combinational loops are allowed or when the
number of flip-flops is very high —thus, generating loops is almost
impossible— the desired number of pins can easily be reached.
However, if no combinational loops are allowed and the number of
flip-flops is low, the number of pins quickly reaches a lower bound.

The hardness of the lower pin bound also depends on the imposed
ratio of output pins to the total number of pins (the fraction � of
output terminals) (figure 5(d)). The reason is quite simply that
the number of output terminals can only be reduced by making
an internal connection (see figure 3). External connections do not
change the number of output terminals. However, every connection
reduces at least one input terminal. So, from the moment the
imposed number of output terminals is reached, no connections
can be made further without augmenting the ratio of outputs to
terminals. It is clear that the problem is worse if a relatively high
number of output pins is desired.

5.3. The net degree distribution

Although the theoretical evaluation of the benchmark generation
method [9] revealed that the net degree distribution for the syn-
thetic benchmark circuits converges to a power law distribution, the
question remains whether this property still holds for benchmarks
generated with the ‘noloops’ option. Therefore, in figure 6, the
net degree distribution of the original benchmark circuit ‘c3540nr’
is compared to that of the synthetic benchmark circuits (with and
without loops). All distributions follow the same path but the vari-

1

10

100

1000

1 10

Original circuit ‘c3540nr’
Generated circuit (with loops)

Generated circuit (no loops)

Net degree

Number of nets

Figure 6. Comparison between the net degree distribution of
the benchmark circuit ‘c3540nr’ and its synthetic counterparts
with and without combinational loops.

Figure 7. Comparison of the redundancy factor Rf between
the original ISCAS89 benchmark circuits and their synthetic
counterparts.

ations are larger in the real circuit, the reason being that real circuits
are less homogeneous than our synthetic ones. The ‘noloops’ op-
tion seems to have an insignificant influence on the net degree
distribution.

5.4. Redundancy in synthetic circuits

The introduction of a functional identity to the logic blocks, to-
gether with the restriction that no combinational loops may be
generated, not only makes our generation program applicable for
evaluating a greater variety of CAD tools, it also results in more
realistic circuits in general. Only one point needs further attention:
the possibly high degree of redundancy in synthetic circuits.

To evaluate the degree of redundancy in our synthetic bench-
mark circuits, we optimized all circuits with SIS, by invoking
script.rugged and mapping the circuit with the minimum area
criterion. We define the redundancy factor ��� as ��� � 1 �����
	�� ,
with � (� �) the number of logic blocks before (after) optimization.
A comparison of the redundancy factor for the ISCAS89 circuits
to the factor for the corresponding circuits generated by gnl, is
shown in figure 7. Since the assignment of the functionality to the
gates is still done at random, we expect the generated circuits to be
redundant [4]. Indeed, it is quite simple to generate a completely
redundant block. Consider, for instance, figure 8. The output a
of a large module is doubled and reconverges into an NAND-gate
again. One of the reconvergent connections is sent through an in-
verter gate first. The result is always 1, making the whole module
redundant.

It would be interesting to know whether or not (part of) the
redundancy in synthetic benchmark circuits is due to circuit pa-

a
a

a
a a=�1

Figure 8. An example of a simple redundant circuit.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) �redundancy vs. Rent

�r �%dff

-0.2

0

0.2

0.4

0.6

0.8

1

0

�R�f
�R�f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80

(b) redundancy vs. %dff

Figure 9. Redundancy factor Rf as a function of the Rent expo-
nent (a) and the number of flip-flops (b). Both the average value
and the standard deviation for a set of generated benchmarks
with the same parameters is shown.

rameters. To investigate this, we examined the influence of the
circuit parameters on the redundancy. No correlation was found
between the redundancy factor and the number of logic blocks in
the circuit. However, we did find a correlation between the redun-
dancy factor and the Rent exponent (figure 9(a)).7 The fact that
the redundancy decreases with increasing interconnection com-
plexity (increasing �) can be explained as follows: for circuits of
low complexity (small �), the number of connections is relatively
higher at the lowest partitioning levels, compared to complex cir-
cuits. Therefore, the chances of introducing reconvergence at low
levels is higher for small values of � . Since it is primarily the re-
convergence at low levels (small sized modules) that has the most
significant impact on redundancy (at higher levels the functional-
ity of the modules is too complex), the circuits of low complexity
have a higher chance to be redundant. This also explains why the
Rent exponent in region II is not correlated to redundancy, which
was also observed: region II only occurs at high partition levels.
Although different Rent exponents in region II imply a different
amount of reconvergence in the circuits, this has no significant
influence since the functionality of the modules is too complex.

Another interesting observation is shown in figure 9(b), where
we varied the relative number of flip-flop elements and observed
that the redundancy factor strongly decreases for an increasing
number of flip-flops until a saturation bound is reached. This
is a result of the fact that highly sequential circuits (more flip-
flops) automaticly reduce redundancy by breaking up (possibly
reconvergent) combinational paths.

6. FUTURE RESEARCH

It is obvious from the results shown in the previous section that
gnl still has a few shortcomings: the number of pins can devi-
ate from the intended number if a prominent region II exists and
no combinational loops are allowed; the high redundancy in the
synthetic circuits; and the homogeneity of the synthetic circuits.

The generation procedure is aimed at following the characteris-

7For the most complex circuits, SIS found an optimized circuit that
contains more logic blocks than the original one, hence the negative re-
dundancy factor. This phenomenon is due to the fact that SIS optimizes
circuits to a generic library and maps this intermediate result afterwards to
the specified library.

tic Rent curve in the first place. To obtain the exact number of input
or output pins as desired, many solutions could be considered. One
possibility is to alleviate the problem by setting the number of out-
put terminals at the boundary between the normal Rent region and
region II low (ultimately, as low as the final number of output pins).
The excess of terminals will then consist only of input terminals.
Those can be reduced more easily which results in a lower bound on
the minimal number of pins at the end. Another solution consists
of keeping some logic blocks at hand, not including them in the
generation process. In region II, these logic blocks can be used for
reconverging two outputs into one. A third solution is to backtrace
to smaller blocks and to gradually change the connections or the
number of pins of lower modules to enable the parameter choices
at the higher levels.

For lowering the redundancy, the adaptation of the circuit pa-
rameters (choosing a higher interconnection complexity or a higher
relative number of flip-flops) is a viable solution. Of course, we
should aim at methods that inherently take redundancy into ac-
count. One approach could be to check if two (or more) gates
share all of their input terminals. Such cases should be prohibited
to prevent the obvious redundancy. A more fundamental way of
preventing redundancy would be to check if reconvergent paths are
introducing redundancy in a similar way as has been done for pre-
venting combinational loops (by keeping through-lists that check
the functionality of the modules). More research is needed in this
respect.

One also might remark on the homogeneity of the resulting
benchmark circuits, especially with respect to obeying Rent’s rule.
We all know that real benchmark circuits never are that homo-
geneous as our synthetic circuits. In fact, making the circuits
more inhomogeneous is not a problem at all. This can simply
be done by introducing a scatter around the value for the number
of pins predicted by Rent’s rule. Although Rent’s curve for the
synthetic benchmark circuits then might look more realistic, it is
questionable if they really would be. One should weigh the gain in
inhomogeneity against the loss of circuit parameter controllability.

7. CONCLUSION

In order to broaden the scope of synthetic benchmark circuits to the
evaluation of timing-driven or logic optimizer applications, func-
tionality has to be included. We extended our existing benchmark
generation method to allow a user-defined library cell selection,
together with a method for preventing combinational loops. Al-
though the number of possible connections is restricted by pro-
hibiting combinational loops, experiments show that this has an
insignificant influence on both the resulting characteristic Rent
curve and the net degree distribution, which are the principal inter-
connection parameters for our graph-based generation method.

One problem that remains to be solved is the redundancy within
the new synthetic circuits. We showed that the redundancy factor
decreases with increasing Rent exponent and with an increasing
number of flip-flops. Changing both quantities thus helps in mit-
igating the redundancy problem. More fundamental solutions are
suggested but need further research before being effectively imple-
mented.

REFERENCES

[1] Computer-Aided Design Benchmarking Laboratory. Web ad-
dress: http://www.cbl.ncsu.edu/benchmarks/.

[2] C. J. Alpert. The ISPD circuit benchmark suite. In Proc. of
the 1998 Intl. Symp. on Physical Design. ACM Press, 1998.

[3] C. J. Alpert and A. B. Kahng. Recent directions in netlist
partitioning: A survey. Integration: the VLSI Journal,
vol. 19 (no. 1–2): pages 1–81, 1995.

[4] K. Iwama, K. Hino, H. Kurokawa, and S. Sawada. Random
benchmark circuits with controlled attributes. In Proc. of the
Electronic Design & Test Conf. on CD-ROM. ACM, 1997.

[5] D. Ghosh, N. Kapur, J. Harlow III, and F. Brglez. Synthesis of
wiring signature-invariant equivalence class circuit mutants
and applications to benchmarking. In Proc. of the Design,
Automation end Test in Europe Conf., pages 656–663. IEEE
Computer Society, February 1998.

[6] M. Hutton, J. Rose, and D. Corneil. Generation of synthetic
sequential benchmark circuits. In ACM/SIGDA Intl. Symp.
on Field Programmable Gate Arrays, pages 149–155, 1997.

[7] B. S. Landman and R. L. Russo. On a pin versus block
relationship for partitions of logic graphs. IEEE Trans. on
Comput., vol. C–20: pages 1469–1479, 1971.

[8] J. Darnauer and W.W. Dai. A method for generating random
circuits and its application to routability measurement. In
Proc. 1996 ACM/SIGDA Intl. Symp. on Field Programmable
Gate Arrays, pages 66–72, February 1996.

[9] D. Stroobandt. Generating new benchmark designs for eval-
uation of CAD tools and new computer architectures. Tech-
nical Report DG 98-05, University of Ghent, Belgium, ELec-
tronics and Information Systems Department, April 1998.
Available at http://www.elis.rug.ac.be/˜dstr/dstr.html.

[10] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierar-
chical designs. IEEE Trans. Comput.-Aided Des., Integrated
Circuits & Syst., vol. 10 (no. 7): pages 911–921, July 1991.

[11] L. Hagen, A. B. Kahng, F. J. Kurdahi, and C. Ramachandran.
On the intrinsic Rent parameter and spectra-based partitioning
methodologies. IEEE Trans. on Comput.-Aided Des., Inte-
grated Circuits & Syst., vol. 13 (no. 1): pages 27–37, January
1994.

[12] R. L. Russo. On the tradeoff between logic performance and
circuit-to-pin ratio for LSI. IEEE Trans. Comput., vol. C–
21: pages 147–153, 1972.

[13] H. Van Marck, D. Stroobandt, and J. Van Campenhout. To-
wards an extension of Rent’s rule for describing local vari-
ations in interconnection complexity. In S. Bai, J. Fan, and
X. Li, editors, Proc. 4th Intl. Conf. for Young Computer Sci-
entists, pages 136–141. Peking University Press, 1995.

[14] E. S. Kuh and T. Ohtsuki. Recent advances in VLSI layout.
Proc. of the IEEE, vol. 78: pages 237–263, 1990.

[15] D. Stroobandt and F. J. Kurdahi. On the characterization of
multi-point nets in electronic designs. In M. A. Bayoumi
and G. Jullien, editors, Proc. of the 8th Great Lakes Sympo-
sium on VLSI, pages 344–350. IEEE Computer Society Press,
February 1998.

[16] D. Stroobandt. Analytical methods for a priori wire length
estimates in computer systems, November 1998. Ph.D. thesis
(English translation from the original text in Dutch), Univer-
sity of Ghent, Belgium, Faculty of Applied Sciences. Avail-
able at http://www.elis.rug.ac.be/˜dstr/dstr.html.

